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ABSTRACT OF THE DISSERTATION

Modeling Reaction-Diffusion Systems with Dynamic Boltzmann Distributions

by

Oliver K Ernst

Doctor of Philosophy in Physics

University of California San Diego, 2021

Professor Terrence Sejnowski, Chair
Professor Henry Abarbanel, Co-Chair

Computational models are an essential tool to understand biological systems. A

common challenge in this field is to find reduced models that offer a simpler effective

description of a system with increased computational efficiency. Recent revived interest in

applications of machine learning has produced algorithms that are naturally suited for this

task. This thesis introduces dynamic Boltzmann distributions (DBDs) for model reduction

of chemical reaction networks. DBDs are an unsupervised learning method, framed in

the language of probabilistic graphical models. This allows a close connection to be made

between DBDs and the description of chemical reaction networks by master equations. In

xv



this framework, this thesis shows how the physics of the system can be incorporated into

otherwise application-agnostic machine learning algorithms. DBDs and their accompanying

physics-informed machine learning algorithms provide a new path forward to apply reduced

modeling methods to study reaction pathways at scale in synaptic neuroscience and other

applications in biology.
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Chapter 1

Introduction

Multiscale modeling in biology has become a forefront topic. In neuroscience,

advances in imaging have created new datasets, from whole brain imaging data from light

sheet microscopy down to reconstructions of synapses from electron microscopy (EM) data.

These advances have been accompanied by a demand for capable multiscale modeling

frameworks that can bridge the scales, connecting chemical signaling pathways at synapses

up to spiking activity in whole neurons and networks.

This hierarchy is driven by biochemistry at the synapse occurring at microsecond and

nanometer scales. EM has been applied to study synapses for more than half a century [1],

and serial EM has been used to reveal the structure of dendritic spines and synapses for

almost as long [2]. Serial EM datasets can be used to generate 3D reconstructions of

neuropil, including axons, dendrites, astrocytes and mitochondria [3]. In addition to what

the geometry can reveal about these systems [4], these reconstructions can be used to

simulate the spatial chemical reaction networks inside synapses that underlie learning and

memory.

The reaction-diffusion software MCell [5, 6] is specially designed for this task,

treating each molecule in a grid-free random walk. Across a 6×6×5µm cube of recon-
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structed rat hippocampal neuropil, this software was used to account for all major sinks &

sources of signaling molecules and interactions with ion channels. This includes AMPA-

and NMDA-type glutamate receptors, L- and R-type voltage-dependent Ca2+ channels,

Na+/Ca2+ exchangers, plasma membrane Ca2+ ATPases, smooth endoplasmic reticulum

Ca2+ ATPases, immobile Ca2+ buffers, and calbindin [3]. Reconstitution experiments

such as this are a leap forward in understanding synaptic neuroscience, as they integrate

signaling pathways which were discovered independently of one another in experiments.

No current imaging technology can simultaneously capture how this symphony of signaling

molecules and pathways works together - for this problem, the simulation is the experiment.

These models of the biochemistry at synapses generate tantalizing questions. For

example, the changing shape and size of synapses is thought to be the essential process of

learning and memory in the brain [7, 4]. How do the signaling pathways at the µs scale

interact with actin filament dynamics over minutes to regulate synaptic morphodynamics?

Across spines on different dendrites, how do the biochemical pathways and spike trains

work together to explain the observed [4] correlations in spine head size? These question

requires multiscale models of synaptic biochemistry, but despite tools such as MCell, this

remains a challenge.

Particle-based methods such as MCell are optimally suited to describe the low and

spatially heterogeneous concentrations of molecules in dendritic spines over the timescales

of µs to seconds. They allow predictions to be made based on changes to the reaction

pathways involved, and can even reproduce the fluorescent dyes used in in vivo experiments.

However, this approach is too computationally demanding over long timescales, such as

those of morphological changes to the spine that occur during learning on the order of

minutes to hours. Furthermore, it is also too demanding to be scaled in space beyond a

handful of synapses, since each tracked particle requires ray tracing and the evaluation

of a potentially large reaction network. Finally, while it is not the focus of this thesis,
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incorporating physics other than the physics of reaction diffusion systems into multi-physics

models is a further challenge. An example of a multi-physics problem is to model the

electrodiffusion of ions in 3D in the electric field generated by an action potential, which is

commonly modeled by a cable equation in one spatial dimension [8, 9].

Alternatively, differential equations for the observables can be derived from the

chemical master equation (CME) describing the system. Ordinary differential equations

typically arise when spatial organization is not considered important. Alternatively, partial

differential equations require a carefully constructed mesh that is refined near ion channels

and other confined environments, balanced with larger grid sizes in the dendritic shaft.

A further pervasive problem in the differential equation setting is moment closure:

for most reaction networks, the differential equations for the moments derived from the

CME do not close. Instead, differential equations for low order moments depend on higher

order observables, leading to an infinite hierarchy of coupled differential equations [10].

To solve this system, the hierarchy must be closed at some level by approximating high

order moments by lower order ones. However, the approximation becomes inaccurate as

higher order terms become relevant to the dynamics. Can it be determined from stochastic

simulations which higher order moments are relevant to the dynamics at any time, and to

find the corresponding optimal moment closure approximation?

At the same time as the development of these realistic models of synaptic bio-

chemistry, a revival has been underway in machine learning algorithms and applications.

Since the field of machine learning is both broad and growing, in this thesis the term

is specifically used to denote the subset of methods concerned with statistical inference:

given a set of data, these methods seek to infer a useful effective probability distribution

describing the data. Here, the meaning of “useful" is task dependent. For example, for

an image, the goal may be that the probability distribution yields a latent representation

that performs better in a classification task than the original image. While classification
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tasks such as this commonly operate on human labeled datasets, statistical inference

methods operate on unlabeled training data. Applying statistical inference methods to

model reduction, the objective is to use examples of the true system (the fine scale) to find

a coarse scale model which reduces computational cost. A closely related machine learning

task is dimensionality reduction, popularized by principal component analysis (PCA) [11],

variational autoencoders (VAEs) [12], and Boltzmann machines [13].

This thesis develops dynamic Boltzmann distributions (DBDs) and their learning

algorithms as a new class of model reduction methods. Modeling with DBDs comprises

two parts: (1) a graphical model defining a reduced model probability distribution, and

(2) a differential equation model describing the time evolution of the interactions in the

graphical model.

DBDs learn a parameterized differential equation system describing a probability

distribution from data. For model reduction of reaction networks, this approach straddles

the divide between stochastic simulations and solving the moment differential equation

systems. The stochastic simulations, for example as performed using MCell for spatial

systems, represent the fine scale ground truth, as they use the exact geometries, are grid

free, naturally treat the stochasticity of individual ion channels, and do not require a

closure approximation. From spatial stochastic simulations, DBDs allow a spatial reduced

model (a PDE system) or a non-spatial reduced model (an ODE system) to be learned.

From non-spatial stochastic simulations, for example using the Gillespie algorithm [14], a

non-spatial reduced model can be learned. The resulting reduced model can be used for

simulations over longer timescales. Alternatively, it can be used in multigrid methods such

as V-cycle or W-cycle methods [15] that iteratively switch between stochastic simulations

and differential equations by model reduction (learning) or model prolongation (sampling)

as appropriate.

The latent variables in the reduced model probability distribution are trained to
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represent the moments relevant to the describe dynamics. DBDs learn the distribution over

latent variables from data, as opposed to other dimensionality reduction approaches such

as VAEs that assume a fixed and known distribution. Throughout this thesis, the latent

variables are also referred to as latent species or latent particles in the context of chemical

reaction networks. The interpretation of the interaction of these latent species through an

energy function is one of the key advantages of DBDs. Further, DBDs can be modified to

describe well-mixed systems, systems on a spatial grid, and systems in continuous space

(grid free).

The choice of the differential equation model is naturally of key importance and

a particular focus of this work. Fundamentally, two options are possible: (1) a generic

approach using basis functions, and (2) a parameterization based on the physics of the

problem under consideration. Both options are explored in this thesis. The latter option is

of particular interest for scientific applications, is it incorporates domain specific knowledge

into machine learning. Physics-informed machine learning methods such as this can be

more interpretable than otherwise “blackbox” machine learning methods. Further, the

use of prior knowledge suggests that they can be lower dimensional and train on fewer

examples than a generic approach. Most importantly, incorporating the physics of the

problem improves the generalization of machine learning methods.

Chapter 2 of this thesis reviews the description of reaction networks by the chemical

master equation (CME) in both well-mixed and spatial settings. Chapter 3 reviews

relevant background on graphical models, statistical inference and Boltzmann machines [13].

Chapter 4 introduces dynamic Boltzmann distributions and explores systems which are

exactly solvable in this framework, largely taken from Ref. [16] with minor edits. Chapter 5

introduces the differential equation constrained learning problem for DBDs, largely taken

from Ref. [17] with minor edits. Some example problems are studied, in particular physics-

based Gaussian graphical models. Chapter 6 introduces lattice models for reaction diffusion
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systems, and studies DBDs for restricted Boltzmann machines, largely taken from Ref. [17]

with minor edits. Further, the extension to deep dynamic Boltzmann distributions with

many layers of latent species is developed, largely taken from Ref. [18] with minor edits.

Chapter 7 returns to biology, applying DBDs to model calcium oscillations in non-excitable

cells. These inositol trisphosphate (IP3)-induced oscillations show unique characteristics

captured only by stochastic models, and demonstrate the advantage of introducing domain-

specific physics knowledge into machine learning problems.
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Chapter 2

Master equations and moment

closure

Reaction networks are described by a chemical master equation (CME). This includes

spatial reaction networks, for which a powerful perturbative approach follows by applying

the techniques from quantum field theory. In this chapter, the CME and its solution is

reviewed. The challenges for solving the CME and the implications to modeling in biology

are laid out, including the moment closure problem, and alternative stochastic simulation

methods. Finally, the motivation for introducing machine learning approaches is made

clear.

2.1 Chemical Master Equation

Consider a system described by n= {nR1 , . . . ,nRM} particles of M different species

R, where each species count nRi = 0,1, . . . is non-negative. Let the probability of being

in state n at time t be given by the distribution p(n, t). Additionally, introduce a set of

reactions indexed by r = 1, . . . ,R. The probability density then evolves in time according
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to the CME:
dp(n, t)
dt

=
R∑
r=1

∑
n′

[
Tr(n|n′)p(n′, t)−Tr(n′|n)p(n, t)

]
, (2.1)

where Tr(n|n′) is the transition rate from state n′ into state n under the reaction indexed

by r. The sum over n′ in this chapter is used to denote a sum over all possible counts

for each species, keeping each count non-negative. The master equation has a number of

interesting properties. It captures the idea of the Markov property for discrete variables,

but in continuous time. It is linear in reactions, which will become important in the model

reduction formalism introduced later.

Unfortunately, while it is easy to write down, there are few problems for which

the CME can be solved analytically. Perturbative methods extend this set of problems,

but most applications in biology are not practically accessible this way. Further, the time

evolution of some quantity of interest X(n) can be readily calculated by summing over

states as:
d〈X(n)〉(t)

dt
=
∑
n
X(n)dp(n, t)

dt
. (2.2)

However, unless the transitions involve only unimolecular reactions, this equation does not

close, meaning that observables of higher order than X(n) appear on the right hand side.

This leads to an infinite hierarchy of moments that can only be solved approximately.

2.1.1 Guiding examples

Consider a simple birth-death process involving M = 1 species A:

X ⇀
kb
A,

A⇀
kd

∅
. (2.3)
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Here, birth occurs from a reservoir X, which is assumed to be a fixed number of particles

nX that never decreases. Without considering the spatial distribution of particles, the

state of the system is described by just the number of particles n= {nA}.

The right hand side of the CME (2.1) has contributions from each of the reactions.

For example, the unimolecular death reaction contributes:

kd
(
(nA+ 1)p(nA+ 1, t)−nAp(nA, t)

)
, (2.4)

because any if any of the nA+ 1 particles in the state {nA+ 1} decay, the resulting state

will be {nA}, giving the probability flow into this state. Similarly, the possible decay of

any of the nA particles gives the probability flow out of this state. The full CME for this

reaction network is:

d

dt
p(nA, t) =kb

(
nXp(nA−1, t)−nXp(nA, t)

)
+kd

(
(nA+ 1)p(nA+ 1, t)−nAp(nA, t)

). (2.5)

This is one of the few chemical master equations for which an analytic solution

exists for certain initial distributions. One way to find such solutions is by using generating

functions. In this one dimensional case, introduce a generating function of the form:

g(z, t) =
∞∑

nA=0
p(nA, t)znA . (2.6)

This has the usual convenient property of a generating function that observables can be

obtained by differentiating and setting z = 1. Further, by reindexing:

∞∑
nA=0

nAp(nA, t)znA = z
∂g(z, t)
∂z

,

∞∑
nA=0

(nA−1)p(nA−1, t)znA = z2∂g(z, t)
∂z

.

(2.7)
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Using (2.5), the generating function therefore evolves according to:

∂g(z, t)
∂t

= (z−1)
(
kbnXg(z, t)−kd

∂g(z, t)
∂z

)
. (2.8)

This PDE can be solved using the method of characteristics. For the specific case where

initially there are no particles p(nA, t= 0) = δnA,1, the solution is:

g(z, t) =
∞∑

nA=0
e−λ(t)λ(t)nA

nA! ,

λ(t) = nXkb
kd

(1− e−kdt),
(2.9)

from which the probability distribution is identified as Poisson:

p(nA, t) = e−λ(t)λ(t)nA
nA! . (2.10)

Next, consider the Lotka-Volterra system, described by the reactions:

H ⇀
kd

∅,

P ⇀
kb

2P,

H+P ⇀
ke

2H.

(2.11)

This is a reaction network involving M = 2 species, with R= {H,P} denoting the hunter

and prey, and system state n= {nH ,nP}. The CME is:

d

dt
p(nH ,nP , t) =kb

(
(nP −1)p(nH ,nP −1, t)−nP p(nH ,nP , t)

)
+kd

(
(nH + 1)p(nH + 1,nP , t)−nHp(nH ,nP , t)

)
+ke

(
(nH + 1)(nP + 1)p(nH + 1,nP + 1, t)−nHnP p(nH ,nP , t)

)
.

(2.12)
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Despite only containing a single bimolecular reaction more than the birth-death

process, no analytic solution to this model exists. As an indicator of how generally

challenging analytic solutions are to find, consider that the solution to the general reaction

scheme A+B� C was worked out only relatively recently in 2000 [19].

2.1.2 Perturbative approach

A very powerful approach to solve the CME was developed by Masao Doi [20, 21]

(and independently by Luca Peliti [22]) by applying the techniques of quantum field theory.

The Doi-Peliti formalism can also describe systems of particles diffusion in continuous 3D

space. The application of these methods have been used in applications such as modeling

actin filament growth [23], as well as to derive stochastic simulation algorithms from first

principles [24].

The crucial concept is the introduction of a probability state vector that acts as a

generating function. Let the state of the system consist of |n〉 particles as previously, now

using the common bra-ket notation, then the probability state vector is defined as:

∣∣Ψ(t)
〉

=
∑
n
p(n, t) |n〉 . (2.13)

Further, associate with every state |n〉 the n-th state of the M dimensional harmonic

oscillator. The raising operator a†Ri creates a particle of species Ri, and the lowering

operator aRi annihilates it:

a†Ri |n〉= |n+ei〉 ,

aRi |n〉= nRi |n−ei〉 ,
(2.14)

where ei is the i-th unit vector of lengthM . The usual commutation relation [aRi ,a
†
Rj ] = δi,j

holds. Additionally, the special vacuum state |0〉 obeys aRi |0〉= 0.
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Similar to a generating function, the probability state vector
∣∣Ψ(t)

〉
can be used to

yield the moments of p. However, the normalization of this state requires a reference state

〈Φ| which is a special case of the Glauber state, specifically the eigenvector of a†Ri with

eigenvalue 1:

〈Φ|= 〈0|exp
M∑
i=1

aRi

=
∑
n
〈n| . (2.15)

The reference state shows probability conservation
〈
Φ
∣∣Ψ(t)

〉
= 1. Further, any observable

〈X〉(t) can now be obtained as:

〈X〉(t) = 〈Φ|X(a,a†)
∣∣Ψ(t)

〉
, (2.16)

where vector notation denotes a= {aRi∀i= 1, . . . ,M}, and similarly for a†.

The state vector satisfies a differential equation similar analogous to the generating

function:
∂

∂t

∣∣Ψ(t)
〉

=
R∑
r=1

Wr(a,a†)
∣∣Ψ(t)

〉
, (2.17)

where Wr is the quantum Hamiltonian corresponding to the reaction indexed by r. For

example, for the hunter-prey reaction (2.11), the operator is:

We = ke

((
a†H

)2
−a†Ha

†
P

)
aHaP . (2.18)

Equation (2.17) has formal solution:

∣∣Ψ(t)
〉

= exp
 R∑
r=1

Wr

∣∣Ψ(t= 0)
〉
. (2.19)

Still, this solution is only possible exactly for few reaction operators because the majority

of reaction operators do not commute. For a general solution, the operator W =∑R
r=1Wr

is split as W =W0 +W1 into a diagonal part W0 which is at most quadratic in the raising
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and lowering operators, and a perturbative part W1 which contains higher order terms.

The time ordered product expansion gives the solution to (2.17) as:

∣∣Ψ(t)
〉

= etW0T (t)
∣∣Ψ(t= 0)

〉
,

T (t) = 1 +
∫ t

t′=0
dt′WT (t′) +

∫ t

t′=0
dt′WT (t′)

∫ t′

t′′=0
dt′′WT (t′′) + . . . ,

WT (t) = e−tW0W1e
tW0 .

(2.20)

From this follows the standard procedure of expanding the exponentials, and combining

terms that are of equal order in the number a,a† (other terms do not contribute). Each

such vacuum expectation value (VeV) is by Wick’s theorem equivalent to a sum over all

non-vanishing permutations of pairs of operators in normal ordering, where each term

in the sum can be represented diagrammatically. Ultimately, since the typical goal is to

calculate some observable of the distribution rather than the full distribution, then the

quantity to be evaluated is the log of the partition function from which the observables

are attainable. For this, only connected diagrams contribute, simplifying the number of

diagrams that must be summed up to some order in the perturbation.

2.1.3 Generating functions and operators

A convenient mapping exists between the generating function notation introduced

earlier and the operator algebra of the Doi-Peliti formalism that allows an easy to calculate

the time evolution of the observables. By letting:

|n〉 →
M∏
i=1

z
nRi
Ri , (2.21)
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the probability state vector becomes the moment generating function:

∣∣Ψ(t)
〉
→ g(z, t) =

∑
n
p(n, t)

M∏
i=1

z
nRi
Ri , (2.22)

where z = {zRi∀i= 1, . . . ,M}. Further, the ladder operators become:

a†Ri → zRi ,

aRi →
∂

∂zRi
.

(2.23)

An observable 〈X〉(t) evolves according to:

d〈X〉
dt

= 〈Φ|X(a,a†)W (a,a†)
∣∣Ψ(t)

〉
→XzWzg(z, t)

∣∣∣∣
z=1

, (2.24)

where Xz,Wz are transformed by (2.23). For example, for the birth reaction in (2.11):

W (a,a†) = kb(a†P −1)a†PaP →Wz = kb(zP −1)zP
∂

∂zP
(2.25)

and taking X as the operator for the number of particles:

X(a,a†) = a†paP →Xz = zP
∂

∂zP
(2.26)

gives the familiar result for exponential growth:

d〈nP 〉
dt

= kb〈nP 〉. (2.27)
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2.2 Moment closure

Consider again the predator-prey reaction:

H+P ⇀
ke

2H, (2.28)

for which the operator is:

We = ke(a†H −a
†
P )a†HaHaP . (2.29)

The time evolution of the means can be easily calculated from (2.24) as:

d〈nP 〉
dt

=−ke〈nHnP 〉,

d〈nH〉
dt

= ke〈nHnP 〉.
(2.30)

This depends on the next highest order term 〈nHnP 〉. Similarly, this observable evolves

according to:
d〈nHnP 〉

dt
=−ke〈n2

HnP 〉+ke〈nHn2
P 〉−ke〈nHnP 〉. (2.31)

This continuous infinitely, where the time evolution of any observable depends on higher

order terms appearing on the right hand side.

Equations (2.30,2.31) are an example of an infinite hierarchy of moment equations.

In order to solve this hierarchy, an approximation must be introduced that closes this

infinite hierarchy at some order. This moment closure approximation turns the system into

a closed system of ordinary differential equations.

Several popular approaches exist for the moment closure approximation. The

mean field approach 〈nHnP 〉 ≈ 〈nH〉〈nP 〉 greatly simplifies the moment equations, but the

approximation is generally inaccurate as it closes the hierarchy at a low level. One way to

close the hierarchy at a higher level is the Gaussian moment closure approximation. For
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an M dimensional multivariate Gaussian distribution defined by the mean vector µ and

covariance matrix Σ, all higher order observables can be expressed in terms of Σ and µ.

For example:

〈nRinRjnRk〉= µiµjµk +µiΣj,k +µjΣi,k +µkΣi,j , (2.32)

for any species indexes i, j,k in 1, . . . ,M . This approximation is more accurate than

mean-field, since it closes the hierarchy at one order higher.

The Gaussian moment closure scheme is an example of a more general approach to

moment closure based on maximizing entropy (MaxEnt). This has been introduced several

times in the literature [25, 16], and is sometimes called zero-information moment closure.

The information entropy at an instant in time for the random variables n is:

H(t) =−
∑
n
p(n, t) lnp(n, t) (2.33)

Define some set of observables at this point in time {〈Oi〉(t)} for i= 1, . . . ,NO that should

be tracked explicitly, i.e. the entropy will be maximized under these constraints for the

moments. Introducing a Lagrange multiplier νi for every constraint, then the unconstrained

optimization problem is to maximize at a specific instant in time:

S(t) =H(t)−
NO∑
i=1

νi(t)
(
〈Oi〉(t)−

∑
n
Oip(n, t)

)
. (2.34)

The solution to this MaxEnt problem is:

p̃(n, t) = 1
Z(t) exp

−NO∑
i=1

νi(t)Oi

,
Z(t) =

∑
n

exp
−NO∑

i=1
νi(t)Oi

.
(2.35)

Here the observables can be obtained from the partition function in the usual way: 〈Oi〉p̃(t) =
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∂ lnZ(t)/∂νi. For the Gaussian moment closure example, the observables are:

〈O1,Ri〉(t) = 〈nRi〉(t),

〈O2,Ri,Rj 〉(t) =


〈nRinRi〉(t) if i 6= j,〈(

nRi
2

)〉
(t) if i= j,

(2.36)

The resulting MaxEnt distribution has the form:

p̃(n, t) = 1
Z(t) exp

− M∑
i=1

ν1,inRi−
M∑
i=1

ν2,i,i

(
nRi
2

)
−

M∑
i=1

∑
j>i

ν2,i,jnRinRj

. (2.37)

where the Lagrange multipliers obey ν2,i,j = ν2,j,i.

Equation (2.37) is an uncommon way to write a Gaussian distribution. However,

this notation reveals an important connection to graphical models, where the Lagrange

multipliers are the interactions in the graph. Figure 2.1 shows an example of such a

graphical model. Every random variable nRi denotes a node in the graph, with edges

representing interactions. The pairwise interactions ν2,Ri,Rj are interactions between two

different nodes, while ν2,Ri,Ri are self interactions.
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Figure 2.1: Example of a Gaussian graphical model (2.37). Open circles represent ob-
served random variables nRi ,nRj , . . . , while filled circles denote latent random variables.
Edges denote interactions. The introduction of latent variables will enable the moment
closure approximation to be learned from simulations, as shown in later chapters.
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Learning in graphical models is the problem of statistical inference, and at the

heart of machine learning [26]. Given observables from experimental data or simulations of

these reaction networks, the problem of determining the interactions in the graph is also

sometimes called the inverse Ising problem in statistical physics.

Almost all machine learning models revolve around latent random variables - in this

case, additional species that are not observed in the data, but introduced to explain the

data. As shown in later chapters, the introduction of latent random variables allows the

moment closure approximation to be learned from data.

The next section will show how stochastic simulations can be used to circumvent the

moment closure problem. Averaging over stochastic simulations is a popular technique for

modeling biological systems, but comes at the cost of significant computational overhead.

2.3 Stochastic simulations

As mentioned earlier, one of the most popular alternatives to solving the CME

are stochastic simulations. A single trajectory of a stochastic simulation corresponds to

a sample from the probability distribution function that is the solution of the master

equation.

2.3.1 The Gillespie algorithm

The Gillespie algorithm [14] is one of the most popular numerical methods for

simulation stochastic trajectories of a reaction network. The original formulation is for

well-mixed system and does not treat a spatial distribution of particles, although it is also

often applied to model systems in the reaction limited regime where diffusion is fast.

The fundamental premise of the Gillespie algorithm is that reactions occur at

random, which is valid when the system is at thermal equilibrium. This leads to the notion
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of a reaction probability density function:

q(τ,r; t,n) = a(r; t,n)exp
−τ R∑

r′=1
a(r′; t,n)

. (2.38)

Given the current state of the system n at time t, then q(τ,r; t,n)dτ is the probability that

a reaction indexed by r will occur in infinitesimal the time interval [t+ τ, t+ τ +dτ ]. Here

n is as before the number of particles of each species n= {nR1 , . . . ,nRM}.

The Gillespie algorithm follows from iteratively sampling from q. The time of the

next reaction τ is exponentially distributed, and the reaction that occurs has probabilities

given by a(r; t,n)/∑R
r′=1a(r′; t,n). Finally, to calculate the propensity of a reaction,

consider a reaction indexed by r of the form:

N (r)∑
i=1

m
(r)
i Ri →

γ(r)
. . . , (2.39)

where N (r) is the number of reactants denoted by the set R, m(r)
i ∈ {1,2, . . .} are the

integer multiplicities of each reactant, and γ(r) is the stochastic reaction rate. The reaction

propensity is given by:

a(r; t,n) = γ(r)
N (r)∏
i=1

(
nRi

)
m

(r)
i

, (2.40)

where (x)n denotes the falling factorial. Note that all possible combinations of particles

gives a binomial coefficient, from which a factor ∏N (r)
i=1 m

(r)
i has been absorbed into the rate

γ(r).

The Gillespie algorithm is a powerful and popular alternative to solving the master

equation. Moments from the distribution are obtained by averaging over many stochastic

simulations. A limitation of the algorithm and generally all such particle-based methods is

that it scales poorly with the number of particles, as this causes the reaction propensities

to increase, leading τ → 0 and an explosive number of reactions to be evaluated. Several
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variants of the algorithm exist to address this, such as tau-leaping [27], which approximates

the number of reactions that occur in a fixed time-step of size τ . The step size can be fixed

or variable, with further algorithms guiding an efficient choice of τ [28]. Alternatively, R-

leaping methods proceed in reaction space, sampling how a fixed total number of reactions

are distributed across the different reaction channels at each step [29]. Finally, exact

R-leaping (ER-leaping) is an accelerated method that works without approximations by

sampling reactions from the same distribution as the original Gillespie algorithm [30].

2.3.2 Spatial stochastic simulations

Applying Gillespie methods to spatial systems is one of the most important modifi-

cations to make when modeling many real systems in biology. For example, in the dendritic

spine head, the organization of ion channels in the membrane is highly precise. The influx

of calcium through voltage gated calcium channels quickly leads to the activation of small

conductance potassium channels (SK channels) because these channels are highly co-located.

The original Gillespie algorithm for well-mixed systems is ill-suited to accurately model

these spatial effects.

A simple modification of the Gillespie algorithm is a compartmental version, where

space is divided into compartments according to some prescription. Inside each compart-

ment, the Gillespie algorithm proceeds independently of the other compartments, modeling

the compartment as well-mixed. Additionally, a hopping rate constant lets particles hop

between neighboring compartments, approximating diffusion. Compartmental Gillespie

approaches are simple to implement and highly suited for parallel implementations, but

still are only coarse approximations to the true particle-particle interactions.

MCell [5, 6] is a highly successful open source modeling platform for spatial stochastic

simulations. MCell tracks individual particles as they diffuse and interact, both on 2D

surfaces and in 3D volumes, whose surfaces are defined by triangulated meshes. Importantly,
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particles are not constrained to a grid or otherwise compartments, but are free to move

to points in 2D or 3D with arbitrary precision. Ray tracing is used to accurately model

diffusion in confined volumes, such as those of dendritic spines.

The main principles of MCell’s core algorithm for spatial stochastic simulations are

briefly reviewed next. The algorithm lets particles diffuse inside a volume in 3D or on a

2D surface. Each species has a unique diffusion constant, for which step lengths ∆r are

sampled from a probability distribution pstep(∆r|∆t) for a set timestep ∆t, along with a

random direction in which to move. The event of particles encountering one another is

called a collision, for which there exists a possibility for a reaction. Let the probability of a

particular reaction indexed by r given that a collision occurred be prxn(r|coll,∆t). These

two probabilities are the main quantities of interest that will be derived from given reaction

rates and diffusion constants.

Consider first just the diffusion process. From the master equation follows Fick’s

2nd law:
∂C(x, t)

∂t
=D∇2C(x, t), (2.41)

where C(x, t) is the concentration for a species at a point x at time t, and D the diffusion

constant. If the concentration is assumed to be radially symmetric C(x, t)≈ C(r, t), then

the solution for a point source of N particles is:

C(r, t) = N

λ(t)3π3/2 e
−r2/λ(t)2

, (2.42)

where λ(t) = 2
√
Dt. Therefore, the probability that a single particle is located in the

spherical shell from radii [∆r,∆r+dr] of infinitesimal volume 4πr2dr is:

pstep(∆r|∆t) = 1
λ(∆t)3π3/2 e

−(∆r)2/λ(∆t)2
×4π(∆r)2dr. (2.43)
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At every timestep, a displacement can be sampled from pstep(∆r|∆t) for every particle,

along with a random direction for the diffusion.

Next, the probability of a particular reaction per collision prxn(r|coll) will be derived.

Consider a bimolecular reaction of the form:

A+B→
γr
C, (2.44)

occurring when a particle of species A diffuses and encounters in space a particle of species

B. Initially, let B be fixed at one point in space - later this restriction will be lifted.

This general reaction is the most interesting to consider: unimolecular reactions occur

independently of the spatial location of particles following the Gillespie algorithm, and

higher order reactions are rare events that are often not modeled.

Assign to every particle an interaction radius rixn. From a single diffusion step of

length ∆r sampled from pstep(∆r), the A particle traces out a 3D cylinder, with volume

V = πr2
ixn∆r. The number of B particles in this cylinder is then nB∈V = cA×V × [B],

where cA is Avogadro’s constant. Integrating over all possible step lengths gives the total

collision probability:

prxn(coll|∆t) =
∫ ∞

∆r=0
d∆r (4π(∆r)2) pstep(∆r)×nB∈V = 2cA

√
πr2

int[B]×λA(∆t). (2.45)

The total probability of the reaction r occuring then is:

prxn(r|∆t) = p(coll|∆t)×prxn(r|coll,∆t) = 2cA
√
πr2

int[B]×prxn(r|coll)×λA(∆t). (2.46)

Mass action kinetics gives the binding rate for this reaction in a time interval ∆t as:

pMA(r|∆t) = kr[B]∆t, (2.47)
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where kr is the reaction rate (the relationship between kr and γr is discussed is Section 2.3.3).

In order for the algorithm to reproduce the true observables, prxn(r|∆t) must equal

pMA(r|∆t):

prxn(r|coll,∆t) = kr
2cA
√
πr2

intvA(∆t) , (2.48)

where vA(∆t) = λ(∆t)/∆t is the characteristic velocity of the particle over ∆t. Finally,

equation (2.48) can be easily generalized to the case where both particles are moving:

prxn(r|coll,∆t) = kr
2cA
√
πr2

int
(
vA(∆t) +vB(∆t)

) . (2.49)

Equations (2.43) and (2.49) together give the core of the particle based stochastic

simulation algorithm MCell. Given the simulation step size ∆t and diffusion constants

for every species, equation (2.43) is used to diffuse particles in space. Ray tracing is used

to detect collisions between particles as they sweep out some effective interaction volume.

When a collision occurs, equation (2.48) is used to evaluate whether a reaction occurs with

a given rate constant.

The choice for the interaction radius is a practical one. First note that by substi-

tuting (2.49) into (2.46), the probability of a reaction is seen to be independent of the

interaction radius. Still, if the interaction radius is too small, too few collisions will occur.

On paper this is rectified by the probability of a reaction per collision (2.49) surpassing

unity, but since this is meaningless, the interaction radius must be chosen as larger. On

the other hand, if it is very large, the particle collides with very many other molecules in a

single timestep, but the probability of a reaction per collision tends to zero. Since this is

numerically inefficient, the radius must be set smaller. In practice, a good choice for the

radius is one for which all reactions have a probability of reaction per collision (2.49) as

O(10−1), yet strictly less than unity.

This approach to spatial stochastic simulations has been validated [5, 6] by comparing
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the simulated stochastic trajectories to the true solutions derived from the master equations.

This includes well-mixed systems that are reaction-limited, i.e. where diffusion is fast, and

spatial systems with simple boundary conditions that admit analytic solutions.

MCell has been used extensively in modeling synaptic neuroscience. Reconstitution

experiments [3] using 3D reconstructions from serial EM microscopy study the many sources

and sinks of signaling molecules such as calcium. These simulations integrate the many

signaling pathways which were discovered independently of one another in experiments -

for this problem, the simulations are the experiment.

2.3.3 Stochastic reaction constants

Up to this point, two reaction constants have appeared. One is the reaction rate,

which is a coefficient in the master equation or in mass action kinetics. The other is a

stochastic reaction constant, which appears in the formulation of a stochastic simulation

algorithm such as the Gillespie algorithm. To clearly differentiate the two, let the constant

appearing in the master equation be the concentration-based reaction rate, and the constant

in the stochastic algorithm be the molecular-based reaction rate. What is the relationship

between these two rates?

Consider again the notation of (2.39) for a reaction indexed by r of the form

N (r)∑
i=1

m
(r)
i Ri →

γ(r)
. . . , (2.50)

Here, γ(r) is the molecular-based reaction rate. Associated with this reaction is the

stoichiometry vector ν(r) of length equal to the number speciesM , whose integer components

ν
(r)
i describe the change in the number of particles of Ri. The goal is to relate γ(r) to the
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concentration-based reaction rate k(r) appearing in mass action kinetics:

d[Rj ]
dt

=−ν(r)
j k(r)

N (r)∏
i=1

(
[Ri]

)m(r)
i + . . . , (2.51)

for j ∈ {1,2, . . . ,N (r)}, and where the . . . denote other possible reactions. Here, k(r) is the

concentration-based reaction rate.

The propensity term for the reaction (2.50) in units of molecules per time is

approximated at large particle numbers as:

a(r; t,n) = γ(r)
N (r)∏
i=1

(
nRi

)
m

(r)
i

≈ γ(r)
N (r)∏
i=1

n
m

(r)
i
Ri . (2.52)

In the mass action equation (2.51), the reaction-based rate of change converted to

units of molecules per time is (without the stoichiometry vector):

cAV ×k(r)
N (r)∏
i=1

(
[Ri]

)m(r)
i = k(r)

∏N (r)
i=1 n

m
(r)
i
Ri

(cAV )−1+
∑N(r)
i=1 m

(r)
i

, (2.53)

where we have substituted the definition of the concentration [Ri] = nRi/(cA×V ) for nRi
particles in volume V where cA is Avogadros constant. Equating this with the approximation

for the approximation for the propensity (2.52) gives the relation:

γ(r) = k(r)(cAV )1−
∑N(r)
i=1 m

(r)
i . (2.54)

Crucially, at low particle counts, the approximation for the propensity (2.52) is inaccurate,

such that mass action kinetics and stochastic simulations do not agree.

25



2.4 Spatial formulations

So far, only well-mixed systems described by n particles of different species have

been considered. The master equation and the Doi-Peliti formalism can similarly describe

spatial systems. In this section, the notation will be introduced for two formulations that

are used later in this thesis: (1) for discrete spatial systems where particles hop on a lattice,

and (2) for continuous spatial systems where particles diffuse in 3D space.

2.4.1 Spatial system on a lattice

Consider a system where particles live on a lattice in the single-particle occupancy

limit. The state of the system is that of an n-vector model from statistical physics, defined

as follows. Assign a unique index i to each of the N sites in the lattice. Let the vector of

possible species R be of size M in some arbitrary ordering, excluding ∅ to denote an empty

site. Spins at site i are multinomial units, represented as a vector si of length M , where

entries si,α ∈ {0,1} for i= 1, . . . ,M denote the absence (0) or presence (1) of a particle of

species Rα. The single-occupancy limit corresponds to the implicit constraint c(i) ∈ {0,1}

for all sites i= 1, . . . ,N that the vectors are of unit length:

c(i) =
M∑
α=1

si,α. (2.55)

The state of the system is given by the matrix S of size N ×M , where each row denotes a

lattice site.

The dynamics of the system can be most easily described in the Doi-Peliti formalism.

The form of the differential equation obeyed by the probability state vector (2.13) is

unchanged:
d

dt

∣∣Ψ(t)
〉

=
R∑
r=1

Wr
∣∣Ψ(t)

〉
, (2.56)
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but the probability state vector itself now becomes:

∣∣Ψ(t)
〉

=
∑
S

p(S, t) |S〉 , (2.57)

where the sum ∑
S maintains the implicit constraint c(i) ∈ {0,1} for i = 1, . . . ,N . The

raising and lowering operators become:

a†i,α |S〉=
(
1− c(i)

) ∣∣∣S+ Ii,α
〉
,

ai,α |S〉= si,α
∣∣∣S− Ii,α〉 , (2.58)

where Iij is the N ×M single-entry matrix with entries zero everywhere except at index

(i, j) where it is one.

Diffusion occurs by particles hopping to neighboring lattice sites. Let the neighbors

of lattice site i be the sites with indexes neigh(i), for i = 1, . . . ,N . Assuming all species

hop with the same rate h, then diffusion operator is:

Wdiff = h
M∑
α=1

N∑
i=1

∑
j∈neigh(i)

(a†j,αai,α−a
†
i,αai,α). (2.59)

Unimolecular reactions can occur anywhere on the lattice, but bimolecular reactions

can only occur between particles on neighboring lattice sites. For example, the operator

for the predator-prey reaction H+P → 2H is

We = κe
∑
〈i,j〉

(
(a†j,H −a

†
j,P )a†i,Haj,Pai,H + (a†i,H −a

†
i,P )a†j,Hai,Paj,H

)
, (2.60)

where ∑〈i,j〉 sums over unique neighbors sites i, j = 1, . . . ,N .

The equivalent generating function formalism now represents states and the proba-
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bility state vector as:

|S〉 →
N∏
i=1

M∏
α=1

z
si,α
i,α ,

∣∣Ψ(t)
〉
→ g(z, t) =

∑
S

p(S, t)
N∏
i=1

M∏
α=1

z
si,α
i,α ,

(2.61)

and the raising and lowering operators and counting operator c(i) become:

a†i,α→
(
1− c(i)

)
zi,α,

ai,α→
∂

∂zi,α
,

c(i)→
M∑
α=1

zi,α
∂

∂zi,α
.

(2.62)

With these transformations, the time evolution of observables can be easily calculated as

before analogously to equation (2.24).

2.4.2 Spatial systems in continuous space

Define the state of the system in continuous space as consisting of n particles, located

at positions x, of species α. Here x is an n× q matrix, where q is the dimension of the

space (e.g. q = 3 for 3D), and α is a vector of length n containing the species label αi ∈R

for i= 1, . . . ,n. Note also that the state is unchanged by the ordering of the particles, i.e.

when both α,x are reordered.

The form of the differential equation obeyed by the probability state vector (2.13)

is again unchanged:
d

dt

∣∣Ψ(t)
〉

=
R∑
r=1

Wr
∣∣Ψ(t)

〉
, (2.63)
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where the probability state vector (2.13) now has become:

∣∣Ψ(t)
〉

=
∞∑
n=0

∑
α

∫
dx p(n,α,x, t) |n,α,x〉 . (2.64)

The sum over α considers for every particle all possible species, while the integral over

position considers for every particle all possible points in the volume, or otherwise over

(−∞,∞). The time evolution operators Wr are now expressed in terms of the lowering

and raising operators that act as:

a†β(y) |n,α,x〉=
∣∣n+ 1,(α,x)∪{(β,y)}

〉
,

aβ(y) |n,α,x〉= nα(x)
∣∣n−1,(α,x)\{(β,y)}

〉
,

(2.65)

where the operation (α,x)∪{(β,y)} denotes appending the new element β to the vector α

and similarly for y and x, and the operation (α,x)\{(β,y)} denotes removing the particle

of species β at located at position y, and:

nβ(y) =
n∑
i=1

δβ,αiδ(xi−y) (2.66)

counts the number of particles of species α at a point x in 3D space.

For example, the diffusion operator is:

Wdiff =
∑
α∈R

Dα

∫
dx a†α(x)∇2

xaα(x)→
∑
α∈R

Dα

∫
dx zα(x)∇2

x
δ

δzα(x) . (2.67)

As an example, consider a system with only one species with diffusion constant D.

Appendix A shows how the formalism can be used to derive the equation for the first order

moments, namely Fick’s second law of diffusion:

∂〈n(x)〉
∂t

=D∇2
x〈n(x)〉, (2.68)
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where x is a point in 3D space. This derivation is easiest by using the generating function

formalism defined by the transformations:

|n,α,x〉 →
n∏
i=1

zαi(xi),

∣∣Ψ(t)
〉
→ g[z](t) =

∞∑
n=0

∑
α

∫
dx p(n,α,x, t)

n∏
i=1

zαi(xi).
(2.69)

Here the generating function variables z from before have turned into functions of a spatial

coordinate, and the moment generating function has turned into a functional. Similarly,

the raising and lowering operators transform as:

a†α(x)→ zα(x),

aα(x)→ δ

δzα(x) ,
(2.70)

where the lowering operator is now expressed of functional derivatives.
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Chapter 3

Graphical models and statistical

inference

Machine learning is a broad field, encompassing neural networks inspired by neu-

roscience, as well as abstract constructions such as reinforcement learning that considers

agents acting in an environment. To make the discussion precise, in this thesis the word

machine learning is used specifically to refer to the problem of statistical inference: given a

set of data, the objective is to estimate a probability distribution that abstracts the data

in a meaningful way. Here, the notion of meaningful is problem specific. It could have to

do with explaining the data, for example finding the directions of maximum variance as in

principal component analysis (PCA). Alternatively, it could have to do with obtaining a

useful representation of the data, for example a representation of images that can be used

to train a classifier as in deep Boltzmann machines (DBMs).

At the heart of these problems are graphical models. In the last chapter, the idea to

introduce a graphical model for learning a moment closure approximation from data was

introduced. In this chapter, the necessary concepts about graphical models are developed.

The focus is on undirected graphical models, also known as Markov random fields (MRFs),
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as they are relevant for the model reduction work to follow. The foundations of MRFs are

discussed, as well as their connection to Ising models in statistical physics. Learning in

MRFs is introduced, ending in the Boltzmann machine learning algorithm and its relevance

to training neural networks.

3.1 From Markov Random Fields to Boltzmann ma-

chines

Undirected graphical models offer a way to represent probabilistic relationships

between random variables represented by nodes. Every undirected graphical model carries

with it two notions: one about conditional independence, and one about factorization. Two

random variables X and Y are conditionally independent of a third variable C if every

path between nodes X and Y must pass through C. Consider for example the graphical

model of Figure 3.1 that describes four random variables nA,nB,nC ,nD corresponding to

the number of particles of four species A,B,C,D. We can identify the following conditional

independence properties among the four random variables nA,nB,nC ,nD:

(nA ⊥ nD) | nC ,

(nB ⊥ nD) | nC .
(3.1)

nA

<latexit sha1_base64="TCCIKZ/6z9ana0jhyDdmPKV+hq4=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEUG9VLx4r2g9oQ9lsJ+3SzSbsboQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IBFcG9f9dgorq2vrG8XN0tb2zu5eef+gqeNUMWywWMSqHVCNgktsGG4EthOFNAoEtoLR7dRvPaHSPJaPZpygH9GB5CFn1FjpQfaue+WKW3VnIMvEy0kFctR75a9uP2ZphNIwQbXueG5i/Iwqw5nASambakwoG9EBdiyVNELtZ7NTJ+TEKn0SxsqWNGSm/p7IaKT1OApsZ0TNUC96U/E/r5Oa8NLPuExSg5LNF4WpICYm079JnytkRowtoUxxeythQ6ooMzadkg3BW3x5mTTPqt559er+vFK7yeMowhEcwyl4cAE1uIM6NIDBAJ7hFd4c4bw4787HvLXg5DOH8AfO5w8YlI2y</latexit>

nB

<latexit sha1_base64="ctb5J9elli/JGRxoDZQAkorsL94=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEUG+lXjxWtB/QhrLZbtqlm03YnQgl9Cd48aCIV3+RN/+N2zYHbX0w8Hhvhpl5QSKFQdf9dgpr6xubW8Xt0s7u3v5B+fCoZeJUM95ksYx1J6CGS6F4EwVK3kk0p1EgeTsY38789hPXRsTqEScJ9yM6VCIUjKKVHlS/3i9X3Ko7B1klXk4qkKPRL3/1BjFLI66QSWpM13MT9DOqUTDJp6VeanhC2ZgOeddSRSNu/Gx+6pScWWVAwljbUkjm6u+JjEbGTKLAdkYUR2bZm4n/ed0Uw2s/EypJkSu2WBSmkmBMZn+TgdCcoZxYQpkW9lbCRlRThjadkg3BW355lbQuqt5l9eb+slKr53EU4QRO4Rw8uIIa3EEDmsBgCM/wCm+OdF6cd+dj0Vpw8plj+APn8wcaGI2z</latexit>

nC

<latexit sha1_base64="eNPjZtrh/QI8rPRY4NCSqVe/3U0=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEUG/FXjxWtB/QhrLZbtqlm03YnQgl9Cd48aCIV3+RN/+N2zYHbX0w8Hhvhpl5QSKFQdf9dgpr6xubW8Xt0s7u3v5B+fCoZeJUM95ksYx1J6CGS6F4EwVK3kk0p1EgeTsY12d++4lrI2L1iJOE+xEdKhEKRtFKD6pf75crbtWdg6wSLycVyNHol796g5ilEVfIJDWm67kJ+hnVKJjk01IvNTyhbEyHvGupohE3fjY/dUrOrDIgYaxtKSRz9fdERiNjJlFgOyOKI7PszcT/vG6K4bWfCZWkyBVbLApTSTAms7/JQGjOUE4soUwLeythI6opQ5tOyYbgLb+8SloXVe+yenN/Wand5nEU4QRO4Rw8uIIa3EEDmsBgCM/wCm+OdF6cd+dj0Vpw8plj+APn8wcbnI20</latexit>

nD

<latexit sha1_base64="J17DvzbqPbaYXDGeBo23eCLldR0=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEUG9FPXisaD+gDWWznbRLN5uwuxFK6E/w4kERr/4ib/4bt20O2vpg4PHeDDPzgkRwbVz32ymsrK6tbxQ3S1vbO7t75f2Dpo5TxbDBYhGrdkA1Ci6xYbgR2E4U0igQ2ApGN1O/9YRK81g+mnGCfkQHkoecUWOlB9m77ZUrbtWdgSwTLycVyFHvlb+6/ZilEUrDBNW647mJ8TOqDGcCJ6VuqjGhbEQH2LFU0gi1n81OnZATq/RJGCtb0pCZ+nsio5HW4yiwnRE1Q73oTcX/vE5qwks/4zJJDUo2XxSmgpiYTP8mfa6QGTG2hDLF7a2EDamizNh0SjYEb/HlZdI8q3rn1av780rtOo+jCEdwDKfgwQXU4A7q0AAGA3iGV3hzhPPivDsf89aCk88cwh84nz8dII21</latexit>

Figure 3.1: Example of a graphical model consisting of four random variables
nA,nB,nC ,nD and three other unspecified random variables (gray).

An undirected graphical model defines the concept of factorization through cliques.
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A clique is any subset of nodes for which a link exists between all pairs of nodes in the

subset, also known as a fully connected set of nodes. An example of a clique in Figure 3.1

is {nA,nB,nC}. Adding the node nD makes this not a clique, since no edge exists between

nodes nA and nD. This makes the clique {nA,nB,nC} a maximal clique, which is a clique

which would cease to be clique if any other node is added.

Maximal cliques are a key concept, as they allow the joint distribution p̃(n) over

random variables n defined by the graph to be written as a product of potential functions

ψC(nC) where the subscript refers to the C-th clique:

p̃(n) = 1
Z

∏
C

ψC(nC),

Z =
∑
n

∏
C

ψC(nC).
(3.2)

Note that ψC(nC)≥ 0 to ensure that the joint probability is strictly positive.

A famous result is the Hammersley-Clifford theorem, which states that the set of

distributions defined by the conditional independence property is the same set of distribu-

tions defined by the factorization property. This lends a simple analogy: an undirected

graphical model is a machine that takes as input all possible probability distributions, and

outputs the family of distributions which obey factorization properties (3.2) or equivalently

conditional independence properties such as (3.1).

The joint distribution (3.2) can be expressed in a more common form:

p̃(n) = 1
Z

exp
−∑

C

E(nC)
, (3.3)

where E is the energy function. Note that is always possible since the potential functions

must be strictly positive. Every MRF therefore defines a family of Boltzmann distributions.

Several examples of Boltzmann distributions corresponding to graphical models
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have already been encountered in Chapter 2, for example Gaussian graphical models:

E(n) =−1
2(n−µ)ᵀΣ−1(n−µ)

=−1
2

(
n+B−1ν1−

1
2B
−1diag(B)

)ᵀ
B

(
n+B−1ν1−

1
2B
−1diag(B)

)
,

(3.4)

where µ,Σ are the mean and covariance matrix. The second line is an equivalent but

less common way to write a Gaussian distribution that has already been encountered in

Chapter 2, but makes the connection to graphical models precise. The precision matrix B

has elements:

B =



ν2,R1,R1 ν2,R1,R2 . . . ν2,R1,RM

ν2,R1,R2 ν2,R2,R2 . . . ν2,R2,RM

. . .

ν2,R1,RM ν2,R2,RM . . . ν2,RM ,RM


, (3.5)

where every entry ν2,R1,R2 is an interaction represented by a line in the graphical model,

and ν1 is the vector of bias terms for each variable. The structure of the graphical model

therefore constrains the structure of the precision matrix, setting missing interactions to

zero.

The two notations are related by:

B = Σ−1,

ν1 =−Σ−1µ+ 1
2diag(Σ−1).

(3.6)

A second popular example from statistical physics is the Ising model shown in

Figure 3.2(a). Consider a 1D lattice of spins s for lattice sites i = 1, . . . ,N , where each

si ∈ {−1,1}. This may represent particles of a single species in the single occupancy limit,
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Figure 3.2: (a) 1D Ising model (biases not shown). (b) Boltzmann machine.

where si the represents the presence or absence of a particle. The energy function is:

E(s) =−
N∑
i=1

aisi−
N−1∑
i=1

Ji,i+1sisi+1, (3.7)

where ai is a bias term (an external field), and Ji,i+1 are nearest neighbor interactions.

An important extension of the Ising model is to allow latent variables. This leads

to a Boltzmann machine [13, 31], as shown in Figure 3.2(b). The energy function takes the

form:

E(v,h;θ) =−aᵀv−bᵀh− 1
2v
ᵀJv− 1

2h
ᵀLh−vᵀWh. (3.8)

If the visible variables are of size Nv and the latent variables are of size Nh, then a and b are

the bias vectors of size Nv and Nh. The matrix J is of size Nv×Nv and L is of size Nh×Nh,

both of which have diagonal terms set to zero such that there are no self-interactions. The

visible-hidden interactions are given by the matrix W of size Nv×Nh.

Boltzmann machines are an important model in machine learning. The discovery

of how to efficiently train Boltzmann machines helped drive the recent revival in neural

networks, as discussed later in Chapter 3.4.1
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3.2 Boltzmann machine learning algorithm

At the heart of statistical inference is to determine the interactions in a graphical

model from a given set of data. For example, let n represent the data. Let the unknown data

distribution that n is obtained from be p, and the graphical model define the distribution

p̃. For p̃ to approximate p, we seek to minimize the Kullback-Leibler (KL) divergence from

the the model to the data distribution:

DKL(p||p̃) =
∑
n
p(n) ln p(n)

p̃(n;θ) . (3.9)

In statistical physics, this problem is sometimes called the inverse Ising problem if all units

are visible.

The KL divergence is not a metric because it is not symmetric and does not obey the

triangle inequality. However, it has an important interpretation is terms of the likelihood

of the data - from the property of the logarithm:

DKL(p||p̃) =H(p)−
∑
n
p(n) ln p̃(n;θ), (3.10)

where H(p) is the entropy. If data n are sampled from p, then the second term is directly the

negative log likelihood. Minimizing the KL divergence is therefore equivalent to maximizing

the log likelihood.
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The gradient of the KL divergence with respect to the parameters is:

∂DKL(p||p̃)
∂θ

=−
∑
n

p(n)
p̃(n;θ)

∂p̃(n;θ)
∂θ

=−
∑
n

p(n)
p̃(n;θ)

1
Z(θ)

∂ exp
(
−E(n;θ)

)
∂θ

+
∑
n

p(n)
Z(θ)

∂Z(θ)
∂θ

=
∑
n
p(n)∂E(n;θ)

∂θ
−
∑
n
p(n)

∑
n′
p̃(n′;θ)∂E(n′;θ)

∂θ

=
〈
∂E(n;θ)

∂θ

〉
p

−
〈
∂E(n;θ)

∂θ

〉
p̃

,

(3.11)

where the final result follows because p is normalized, and 〈X〉p denotes an average taken

over the distribution p, and similarly 〈X〉p̃ over p̃.

Equation (3.11) is a popular result that forms the core of what is known as the

Boltzmann machine learning algorithm (BMLA). The BMLA is a first order optimization

method to minimize the KL divergence from p̃ to p. Note that DKL(p||p̃) is convex in p̃ for

fixed p. The average over the data distribution p is also known as the wake phase moment,

and the average over the model distribution p̃ is also known as the sleep phase moment.

In practice, these moments are typically approximated by Markov chain Monte Carlo

(MCMC) sampling [13], with separate chains used for the two observables. This makes

the BMLA a stochastic first order optimization method. Finally, while (3.11) considers

discrete random variables n, the BMLA similarly applies to continuous random variables,

with sums replaced by integrals.

3.2.1 Connection to expectation maximization

The general way to learn the interaction parameters in a graph with latent variables

is by expectation maximization (EM). Splitting the random variables into observed nv and

latent variables h, it is based on the following decomposition, valid for any distribution
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q(nh):

ln p̃(nv;θ) =−DKL(q(nh)||p̃(nv,nh;θ)) +DKL(q(nh)||p̃(nh|nv;θ)). (3.12)

Since the KL divergence is strictly positive, then the first term −DKL(q(nh)||p̃(nv,nh))

is a lower bound on the log likelihood. The EM algorithm [26] therefore proceeds in two

steps:

• The expectation step, where θold is fixed at the current values, and q is chosen to

minimize the second term. Clearly, this occurs for q(nh) = p̃(nh|nv;θold), which

makes the bound tight.

• The maximization step, where q is fixed and the first term is maximized in θ.

Substituting the solution of the expectation step into the first term gives the update

step:

θ←max
θ

Q(θ,θold), (3.13)

where

Q(θ,θold) =−DKL(q(nh)||p̃(nv,nh;θ)) =
∑
nh

p̃(nh|nv;θold) ln p̃(nv,nh;θ) + const.

(3.14)

EM and the BMLA are closely connected and maximize the same objective [32]. Evaluating

p̃(nh|nv;θold) in the expectation step is often intractable and done by sampling as in the

BMLA. With this, the gradient of BMLA (3.11) is the same as the gradient of the objective

function in the maximization step (3.14).
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3.3 Contrastive divergence

Consider again the Boltzmann machine (3.8). Minimizing the KL-divergence using

the BMLA leads to the gradients of the usual form (3.11) - a difference between expectations

under the model and data distributions:

∂E

∂W
=
〈
vhᵀ

〉
p̃
−
〈
vhᵀ

〉
p
,

∂E

∂L
= 〈vvᵀ〉p̃−〈vv

ᵀ〉p ,

∂E

∂J
=
〈
hhᵀ

〉
p̃
−
〈
hhᵀ

〉
p
,

(3.15)

and similarly for the bias vectors a and b. While the exact observables in this model are

intractable, an efficient MCMC sampling method known as Gibbs sampling [26] can be used

to approximate them from a small chosen number of chains. Gibbs sampling iteratively

draws from the marginal distributions:

p(vi = 1|v−i,h) = σsigmoid

ai+ Nv∑
k 6=i

Jikvk +
Nh∑
j=1

Wijhj

 ,
p(hj = 1|v,h−j) = σsigmoid

bj +
Nh∑
l 6=j

Ljlhl+
Nv∑
i=1

Wijvi

 ,
(3.16)

where v−i denotes v without the i-th element, and the sigmoid is:

σsigmoid(x) =
(
1 + e−x

)−1
. (3.17)

Despite the fact that the chains can be run in parallel, letting them run to convergence

is a major computational bottleneck. Instead, the idea to terminate the chains early was

popularized by [33] in 2002. In the original algorithm, known as contrastive divergence

(CD), only a single step of the Gibbs sampler for both chains is run at each optimization
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step. CD therefore does not minimize the KL divergence, but rather minimizes [34]:

DKL(p0||p̃)−DKL(p1||p̃) (3.18)

where p0 is the data distribution and p1 is the distribution after a single step of Gibbs

sampling. CD greatly improves the efficiency of the BMLA. A second advantage of the CD

is the stochasticity of the moments - stochastic gradient descent can improve optimization

in high dimensional parameter spaces, because there is a chance that the optimizer can

escape local minima through noisy gradients [35].

(a) (b) (c) (d)
RBM DBN DBM DBM with classifier

(e)
Deep neural network

Figure 3.3: (a) Restricted Boltzmann machine (RBM) with visible units in black and
latent units in white. (b) Deep belief network (DBN). (c) Deep Boltzmann machine
(DBM). (d) DBM with classifier on top, indicated by a gray unit for binary classification.
Other weights are commonly fixed (dashed lines) while training the classifier, or otherwise
only allowed to adjust with a small learning rate. (e) A deep neural network for a binary
classification task trained end-to-end.

To see CD in action, consider a popular form of a Boltzmann machine known as

restricted Boltzmann machines (RBMs), in which the visible-visible and hidden-hidden

interactions are discarded. The energy function becomes:

E(v,h;θ) =−aᵀv−bᵀh−vᵀWh. (3.19)

For a given set of data samples {v[0]}, CD sampling proceeds by for every sample:
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• Sampling the hidden units given the visible:

p(h[0]
j = 1|v[0]) = σsigmoid

bj +
Nv∑
i=1

Wijv
[0]
i

 . (3.20)

• The sample (v[0],h[0]) is used as one of the samples to evaluate the moments under

the data distribution.

• Sampling the visible units from the hidden, followed by (3.20) again:

p(v[1]
i = 1|h[0]) = σsigmoid

ai+ Nh∑
j=1

Wijh
[0]
j

 ,
p(h[1]

j = 1|v[1]) = σsigmoid

bj +
Nv∑
i=1

Wijv
[1]
i

 .
(3.21)

• The sample (v[1],h[1]) is used as one of the samples to evaluate the moments under

the model distribution.

Another important variant on CD is persistent CD (PCD) [36], in which the Gibbs

chains for estimating the model and data distributions are separated, and the model

distribution chain is not restarted every optimization step. Instead, the latent variables

h[1] of the last optimization step are used in the next optimization step as the initial h[0] in

the second step of CD sampling (3.21). The data chains are restarted at every optimization

step as before and given by (3.20).
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3.4 Deep belief networks and deep Boltzmann ma-

chines

RBMs have been used in applications from representing the quantum many body

wavefunction [37] to modeling lattice proteins [38]. An obvious extension is to have multiple

layers of hidden units to learn richer latent representations. A deep Boltzmann machine

(DBM) [31] has energy function:

E({s(l)}) =−
L−1∑
l=0

(a(l))ᵀs(l)−
L−2∑
l=0

(s(l))ᵀW (l,l+1)s(l+1), (3.22)

where units s(l) of size N (l) have been organized by layer l = 0, . . . ,L−1. Despite the direct

generalization from RBMs, DBMs were initially non-trivial to train. When multiple layers

are involved, the signals appearing in the activation function can fluctuate wildly because

the layers are coupled to eachother. Small learning rates can be used to compensate the

large fluctuations in the gradients, but this dramatically slows down learning. The tricks

developed to train DBMs reveal some of the key ingredients that current neural networks

use to train end-to-end on supervised tasks.

One early strategy to circumvent this is layer-by-layer pre-training of stacked

RBMs [39], where a single RBM layer is trained at a time. After it is trained, its weights

and biases are frozen to train the next RBM in the stack. The visible units for training

this next RBM are obtained by a forward pass through the lower RBMs in the stack. The

resulting model is known as a deep belief network (DBN). A similar pre-training strategy

for DBMs was one of the first methods that allowed deep representations to be learned [31].

Despite this success, pre-training is labor intensive and requires careful tuning for

the solution of several optimization problems in series. A more robust strategy is to use

a centering transformation [40, 41]. A centered DBM with parameters ã(l), W̃ (l,l+1) has
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energy function:

E({s(l)}) =−
L−1∑
l=0

(ã(l))ᵀ
(
s(l)−µ(l)

)
−
L−2∑
l=0

(
s(l)−µ(l)

)ᵀ
W̃ (l,l+1)

(
s(l+1)−µ(l+1)

)
, (3.23)

where µ(l) are the centers in layer l. The centers are additional parameters that are chosen

(rather than learned) as the mean unit activation in each layer. Crucially, every regular

DBM can be transformed to a centered DBM by transforming parameters as:

W̃ (l,l+1) =W (l,l+1),

ã(l) = a(l) + (W (l−1,l))ᵀµ(l−1) +W (l,l+1)µ(l+1).
(3.24)

This can be used to derive the centered gradient [41]: After sampling the moments of a

regular DBM, transform to a centered DBM, calculate the gradient with respect to the

centered parameters, and transform back to obtain the gradient for the regular DBM

parameters. The result is

∂E

∂W (l,l+1) =
〈
(s(l)−µ(l))(s(l+1)−µ(l+1))ᵀ

〉
p
−
〈
(s(l)−µ(l))(s(l+1)−µ(l+1))ᵀ

〉
p̃
,

∂E

∂a
(l)
α

=
〈
s(l)

〉
p
−
〈
s(l)

〉
p̃
−
(

∂E

∂W (l−1,l)

)ᵀ
µ(l−1)− ∂E

∂W (l,l+1)µ
(l+1).

(3.25)

To reduce noise, the centers are updated as the average unit’s state with an exponential

sliding average with sliding parameter r ∈ [0,1]:

µ(l)← (1− r)×µ(l) + r×
〈
s(l)

〉
p̃,batch

, (3.26)

where the average is over the batch of training data used in a single optimization step.

The centering transformations enables training DBMs without pre-training. The

availability of multiple layers of hidden units allows more useful representations to be

learned than in RBMs.
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3.4.1 To supervised learning

Many common applications of machine learning are to supervised tasks, i.e. tasks

where data are labeled, and the goal is to predict a target output for a given input.

The Boltzmann machine learning algorithm applies to unsupervised problems, i.e. where

data are unlabeled, and the goal is to learn a more useful representation of the data.

These representations directly enable supervised applications, most commonly by adding

a classifier that takes as inputs the latent variables in the final layer. Figure 3.3 shows

an illustration of a DBM where a binary classifier is trained from the final hidden layer.

Commonly, the weights and biases in the DBM are held fixed while the classifier is trained.

Figure 3.3 is an important concept, because it shows that every supervised task can

be viewed as containing an unsupervised task of learning useful representations. Separately

training DBMs and then a classifier was one of the first methods to effectively train deep

neural networks. Training a deep neural network “end-to-end" in a supervised fashion

suffers from the vanishing gradient problem. This arises from applying backpropagation to

calculate the gradients: small gradients in one layer will lead to increasingly small gradients

in subsequent layers because they are multiplicative. However, since the development of

DBMs, several advancements have allowed the training of networks end-to-end, without

explicitly separating out an unsupervised task:

• Replacing the sigmoid activation function (3.17) with rectified linear units (ReLUs),

given by:

σReLU(x) =


1 if x≥ 0,

0 otherwise.
(3.27)

Note that ReLUs can be represented in Boltzmann machines, e.g. in RBMs, by an
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energy function of the form [42]:

E(v,h) =−vᵀWh−aᵀv+
M∑
j=1
U(hj),

U(h) =


h2

2 +hθ for h≥ 0,

∞ for h < 0.

(3.28)

• The use of dropout, where during training, units are set to zero after passing the

activation function with some probability α. Common choices are α∼ 0.5 for most

layers, but smaller rates α ∼ 0.1 in the input layer to prevent discarding signals

too early. After training the network, the dropout layers are discarded, such that

the evaluation of the network on a given input is deterministic. However, during

training, dropout reduces the average magnitudes of signals passing between layers

by a factor α. To account for this, after training, weights are rescaled by the factor α

corresponding to each layer.

Dropout greatly improves the generalization of neural networks to samples not seen

during training. It is commonly combined with regularization of the weights.

• Regularization of weights, commonly by introducing an L1 norm in the objective

function, or otherwise by clipping weights beyond a cutoff magnitude.

• Batch normalization [43], which applies a similar transformation as centering, where

the input to every activation function is first standardized as:

x→ x0 = x−µ√
σ2

, (3.29)
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and then additionally, an affine transformation is performed:

x̂= γx0 +β, (3.30)

and the resulting x̂ passed to the activation function as before. Note that here all

parameters are scalars, i.e. the input to every neuron is standardized and transformed

independently. The mean µ and variance σ2 are estimated over batches of data, while

the shift and scale parameters β,γ are learned as part of backpropagation.

Batch normalization directly standardizes the magnitudes of signals passed between

layers and prevents gradients from vanishing. Note that batch normalization and

dropout are not used together. During training, the approximate magnitude of the

signal seen in a layer is reduced by the dropout factor α. This corrupts the magnitudes

of the mean and variance estimated in batch normalization.

3.5 Machine learning for model reduction

Previous work has shown the applicability of machine learning to model reduction.

In particular, the “Graph Constrained Correlation Dynamics" (GCCD) framework [10]

uses a Markov Random Field (MRF) of plausible state variables and interactions as

input, incorporating human expertise into the model reduction process. The probability

distribution associated with this MRF is written in a form that separates the time evolution

µ(t) from the graph structure Vα(s):

p̃(s, t;{µ}) = 1
Z(µ(t)) exp

[
−
∑
α
µα(t)Vα(s)

]
. (3.31)

where s are the random variables, µ are time-dependent interactions, and Vα(s) are clique

potentials. At each point in time, the interactions µ(t) are learned separately from the
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data using the Boltzmann machine learning algorithm (BMLA) [13] introduced earlier. To

link snapshots in time, a differential equation model is introduced for the interactions:

dµα(t)
dt

= fα(µ(t)) =
∑
A

θα,AfA(µ(t)), (3.32)

which is linear in basis functions fA with parameter matrix θ to be learned. The basis

functions are elementary functions such exponentials and polynomials in µ, which are

identified to be relevant to the problem from two and four-state binding models. Later

work on model identification [44] used a similar linear model, but without the connection

to a reduced model probability distribution (3.31).

After learning parameters µ from data separately using BMLA at each timepoint

t= 0,1, . . . ,T and calculating their derivatives in time, GCCD minimizes the L2 loss:

S =
∑
α

T∑
t=0

∣∣∣∣∣∣
∑
A

θα,AfA(µ(t))−
(
dµα(t)
dt

)
BMLA

∣∣∣∣∣∣
2

+λ
∑
α
|θα,A| (3.33)

for the parameter matrix θ and where λ is a sparsity regularizer.

The choice of the MRF for (3.31) is guided by human knowledge. For example,

to model the activation of Ca2+/calmodulin-dependent protein kinase II (CaMKII) by

calcium, the graphical model reflected the known structure of CaMKII, resulting in a large

degree of model reduction [10]. The ability to introduce prior knowledge into the problem

to guide the choice of the MRF is a key advantage of the method.

The two subproblems in GCCD are solved separately:

• The state estimation problem to determine the interactions in the graph (3.31) at an

instant in time.

• The time evolution problem to determine the optimal coefficients in the differential

equation model (3.32).
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Solving these problems independently is a limitation for the representations that can be

learned, as these problems are actually linked. The idea to formulate a single differential

equation constrained optimization problem is starting point for the introduction of dynamic

Boltzmann distributions in the next chapter. Furthermore, it is often the case that

the dynamics studied are not well-described by linear combinations of available basis

functions [44]. One solution is to extend the set of basis functions, but the growing

success of machine learning suggests that a more promising approach is to learn non-linear

combinations of basis functions through a neural network. This idea will be explored in

later chapters of this thesis.
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Chapter 4

Dynamic Boltzmann distributions

The previous chapter introduced the Boltzmann machine learning algorithm for

statistical inference in graphs. In this chapter, dynamic Boltzmann distributions will be

introduced as reduced models for stochastic chemical reaction networks. The advantage

of this approach is the strong parallels between the fine scale model of chemical kinetics

described in Chapter 1 and the reduced model defined by a graphical model described in

Chapter 2. Therefore, the physics of the system can be incorporated into the problem as

shown for several example systems. This chapter is taken with minor edits from [16].

4.1 Spatial dynamic Boltzmann distributions

Consider a system of n particles. Each particle carries with it a species label αi,

such that the vector α of length n describes the species labels of all particles. Further, let

the particles be distributed in 3D space, such that the position of all particles is described

by the matrix x of size n×d where d= 3 is the dimension of the space. The fine-scale state

of the system at time t is then described by |n,α,x, t〉, where we have used the common

bra/ket notation. The time evolution of this state can be expressed in the Doi-Peliti

formalism as shown in Chapter 2.
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Figure 4.1: Example of time-dependent pairwise interactions ν2 between four particles
of species (A,B,B,C) at positions (x1,x2,x3,x4).

In the spirit of a Markov random field (MRF), construct states in a coarse-scale

model:

∣∣∣{νk}Kk=1, t
〉

= 1
Z
[
{νk}Kk=1

] ∞∑
n=0

∑
α

∫
dx exp

− K∑
k=1

∑
〈i〉nk

νk(α〈i〉nk ,x〈i〉nk , t)

 |n,α,x, t〉 , (4.1)

where 〈i〉nk = {i1 < i2 < · · · < ik : i ∈ [1,n]} denotes ordered subsets of k indexes each in

{1,2, . . . ,n}, and νk(α〈i〉nk ,x〈i〉nk , t) are k-particle interaction functions up to a cutoff order K.

We note that {. . .}Kk=1 is used to denote an index-ordered set in this context. In other words,

equation (4.1) considers all self-interactions ν1 for every particle, all pairwise interactions

ν2 between all possible pairs of particles, etc., continuing up to a cutoff interaction order

K. Figure 4.1 shows an example of such pairwise interactions. This expansion of n-body

interactions is a specific case of more general dimension-wise decompositions, such as

analysis of least variance (ANOVA) [45].

The probability of being in a state |n,α,x, t〉 is given by a dynamic and instantaneous

Boltzmann distribution:

p̃(n,α,x, t) =
〈
n,α,x, t

∣∣∣{νk}Kk=1, t
〉

=
exp

[
−∑K

k=1
∑
〈i〉nk νk(α〈i〉nk ,x〈i〉nk , t)

]
Z
[
{νk}Kk=1

] . (4.2)

The probability distribution p(n,α,x, t) over the fine scale states |n,α,x, t〉 evolves ac-
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cording to the CME. To describe the time evolution of the reduced model, introduce a

differential equation system for the interaction functions {νk}Kk=1:

d

dt
νk(α〈i〉nk ,x〈i〉nk , t) = Fk

[
{ν(α,x, t)}

]
, (4.3)

where each Fk is a functional. The arguments to this functional are:

{ν(α,x, t)}=
{
νk′(α〈j〉nk′ ,x〈j〉nk′ , t) ∀ 〈j〉

n
k′ : 1≤ k′ ≤K

}
, (4.4)

which denotes all possible ν functions evaluated at the given arguments. The right hand

side Fk may be a global functional, in the sense that the arguments {ν(α,x, t)} are not

restricted to the arguments appearing on the left hand side of (4.3).

4.1.1 What makes the reduced model a good choice

In addition to the connection to MRFs, we note several advantages of the form of

this reduced model (4.2,4.3):

1. Since the states
∣∣∣{νk}Kk=1, t

〉
define a grand canonical ensemble (GCE), (4.2) exactly

describes equilibrium systems, and is expected to reasonably approximate systems

approaching equilibrium.

2. If the interactions between two groups of particles are independent, their joint

probability distribution equals the product of their probabilities, and their interaction

functions νk in (4.2) sum. The Boltzmann distribution thus preserves the locality of

interactions.

3. A further important result pertains to linearity, stated in the following proposition.

Proposition 1. Given a reaction network and a fixed collection of K interaction functions
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{νk}Kk=1, the linearity of the CME in reaction operators extends to the functionals Fk =∑R
r=1F

(r,closed)
k calculated under the zero-information moment closure approximation.

Proof. The dynamic Boltzmann distribution p̃(n,α,x, t) is a maximum entropy (MaxEnt)

distribution, where each interaction function νk(α〈i〉nk ,x〈i〉nk , t) controls a corresponding

moment µk(α〈i〉nk ,x〈i〉nk , t)}, given by:

µk(α〈i〉nk ,x〈i〉nk , t) =
∞∑
n′=0

∑
α′

∫
dx′ p(n′,α′,x′, t)

∑
〈j〉n

′
k

δ(x〈i〉nk −x
′
〈j〉n

′
k

)δ(α〈i〉nk −α
′
〈j〉n

′
k

). (4.5)

Here, δ(x) denotes a multi-dimensional Dirac delta function. Note that there are L =∑K
k=1

(
n
k

)
interaction terms and equally many moments they control. Switching to vector

notation, let ν of length L denote the interaction functions, and µ the corresponding

moments.

Relating the interaction functions to the moments constitutes an inverse Ising

problem. Let the solution to this problem be

νl = φl(µ) (4.6)

for some functions φl for l= 1, . . . ,L. This solution depends only on the interaction functions,

and not on the reaction operators appearing in the CME. For a single reaction process, let

the differential equations for the moments be µ̇(r), resulting from ṗ(r) =W (r)p(r), where ẋ

denotes a time derivative. Taking the time derivatives of both sides of (4.6) gives:

ν̇
(r)
l =

L∑
l′=1

∂φl(µ)
∂µl′

µ̇
(r)
l′ (4.7)

The differential equations for the moments µ̇(r)
l′ typically do not close; under the zero-

information closure approximation, we replace p with p̃, closing these equations under the
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assumed form of p̃. Let the closed form be µ̇(r,closed)
l′ . For the full network of reactions

then:

ν̇l =
L∑
l′=1

∂φl(µ)
∂µl′

µ̇l′ =
∑
r

L∑
l′=1

∂φl(µ)
∂µl′

µ̇
(r,closed)
l′ =

∑
r
ν̇

(r,closed)
l (4.8)

gives the desired linearity property by the definitions Fl = ν̇l and F
(r,closed)
l = ν̇

(r,closed)
l .

Due to Proposition 1, the functions F (r,closed) can be referred to as basis functionals.

The utility of this property will be explored further in a machine learning context.

4.2 The two problems for learning dynamic Boltz-

mann distributions

The learning problem for dynamic Boltzmann distributions consists of two parts:

1. The state estimation problem to determine the interaction functions in the energy

function (4.2) at an instant in time.

2. The reduced model estimation problem to determine the right hand sides of the

differential equations (4.3).

In practice, the form of the differential must be specified in terms of ordinary parameters

in order to solve an optimization problem. Before we do this, we will write down a general

solution to this problem, and then consider how it can help to guide the choice for the

differential equations.

While the two problems can be solved separately as in GCCD, the two depend on

each-other. Define the action as the KL-divergence between the true and reduced models
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(extending Ref. [10]):

S =
∫ ∞

0
dtDKL(p||p̃),

DKL(p||p̃) =
∞∑
n=0

∑
α

∫
dx p(n,α,x, t) ln p(n,α,x, t)

p̃(n,α,x, t) .
(4.9)

Next, we introduce notation to define a higher-order variational problem. Since the

interaction functions are defined by specifying the set of functionals Fk[{ν(α,x, t)}] for all

k = 1, . . . ,K, we use the notation νk[{F}] to denote that νk is a higher-order generalization

of a functional. The action is a functional of the set of all interaction functions, which we

denote by S[{ν[{F}]}], where {x}= {xk}Kk=1.

The higher-order variational problem for the basis functionals is given by the chain

rule:

δ̂S[{ν[{F}]}]
δ̂Fk

[
{ν(α,x, t)}

] =
K∑
k′=1

∑
α′

∫
dx′

∫
dt′

δS[{ν}]
δνk′(α′,x′, t′)

δ̂νk′(α′,x′, t′)
δ̂Fk

[
{ν(α,x, t)}

] = 0, (4.10)

where we use the notation δ̂ to denote that this is not an ordinary variational problem, in

the sense that a variation with respect to a functional is implied. Equation (4.10) should

therefore be regarded as a purely notation solution, generalizing the well-known chain

rule for functionals where a variational derivative is taken of a functional of a functional:
δF [G[φ]]
δφ(y) =

∫
dx δF [G]

δG(x)
δG[φ]
δφ(y) . The first term is a variational derivative analogous to that

appearing in the derivation of the BM learning algorithm [13], giving:

δ̂S[{ν[{F}]}]
δ̂Fk

[
{ν(α,x, t)}

]
=

K∑
k′=1

∑
α′

∫
dx′

∫ ∞
0

dt′
(
µk′(α′,x′, t′)− µ̃k′(α′,x′, t′)

) δ̂νk′(α′,x′, t′)
δ̂Fk

[
{ν(α,x, t)}

]
=0,

(4.11)
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where the moments µ are defined in (4.5), with µ̃ having p replaced by p̃. Next, we consider

well-mixed systems where the de-escalation from functionals to ordinary functions Fk makes

this problem (4.11) well-defined. In Section 4.3.3, we parameterize the functional form of

F to consider spatially distributed systems.

4.3 Analytic MaxEnt solutions

4.3.1 Well-mixed systems in one species

In the case of well-mixed systems in one species, the state of the system is entirely

characterized by the number of individuals |n,t〉. Dropping the species and position labels

in the dynamic Boltzmann distribution gives:

p̃(n,t) = 1
Z
(
{ν}

) exp
− K∑

k=1

(
n

k

)
νk(t)

, (4.12)

where we use the notation {ν}= {νk′}Kk′=1. The time evolution is now described by basis

functions forming the autonomous differential equation system:

d

dt
νk(t) = Fk

(
{ν}

)
,

with I.C.: νk(t= 0) = ηk,

(4.13)

where Fk are now functions rather than functionals Fk. The variational problem (4.11) for

the basis functions becomes:

δS[{ν[{F}]}]
δFk({ν})

=
K∑
k′=1

∫ ∞
0

dt′

〈(n
k′

)〉
p(t′)
−
〈(

n

k′

)〉
p̃(t′)

 δνk′(t′)
δFk({ν})

= 0, (4.14)

where 〈X〉p (t′) =∑∞
n=0Xp(n,t′) and similarly for p̃.

The variational term on the RHS of (4.14) may be eliminated in adjoint method, as
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discussed in Chapter 5. In this chapter, the direct sensitivity approach is used to evaluate

the desired gradients. The equation for the sensitivities can determined by a number of

methods, including by an ODE formulation derived in Appendix B.1.1, a PDE formulation

derived from applying the chain rule at the initial condition, and using a Lie series approach

(Appendix B.3.2). The first of these and arguably the most practical is:

d

dt′

(
δνk′(t′)
δFk({ν})

)
=

K∑
l=1

∂Fk′({ν(t′)})
∂νl(t′)

δνl(t′)
δFk({ν})

+ δk′,kδ({ν}−{ν(t′)}),

with I.C.: δνk′(t′ = 0)
δFk({ν})

=0.
(4.15)

An algorithmic solution to (4.14) is therefore possible in the form of a PDE-constrained

optimization problem: Solve (4.14,4.15) subject to the PDE-constraint (4.13). An example

algorithm using simple gradient descent is given by Algorithm 1.

We note the implicit connection between this approach and using Boltzmann

machines, such as in GCCD, by the algorithm’s objective function. Here, the whole

trajectory of moments from stochastic simulations is used to directly estimate time evolution

operators, rather than estimating the interaction parameters at each time step. We make

this connection explicit in Algorithm 2 in Section 4.4.3 below.

Further improvements to Algorithm 1 are possible, such as to replace ordinary

gradient descent by an accelerated version, e.g. Nesterov accelerated gradient descent [46].

Furthermore, the wealth of methods available to solve PDE-constrained optimization

problems, e.g. adjoint methods [47], offer rich possibilities for further development.

Example: Mean of the Galton-Watson Branching Process

As a simple illustrative example, consider a reduced model that captures the time-

evolving mean of the Galton-Watson branching process, consisting of the birth process

A→ A+A with rate kb and death A→∅ with rate kd.
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Algorithm 1 Gradient Descent for Learning Basis Functions Governing Well-Mixed
Dynamics
1: Initialize
2: Grid of values {ν} to solve over.
3: Fk({ν}) for k = 1, . . . ,K.
4: Max. integration time T .
5: A formula for the learning rate λ.
6: while not converged do
7: Initialize ∆Fk({ν}) = 0 for all k,{ν}.
8: Generate a sample of random initial conditions {η}.
9: for ηi ∈ {η} do

10: . Generate trajectory in reduced space {ν}:
11: Solve the PDE constraint (4.13) with IC ηi for 0≤ t≤ T .
12: Solve (4.15) for variational term δνk′(t)/δFk({ν}).
13: . Sampling step:
14: Evaluate moments

〈(
n
k′

)〉
p̃(t′)

of the Boltzmann distribution by sampling or
analytically.

15: Evaluate true moments
〈(

n
k′

)〉
p(t′)

by stochastic simulation or analytic solution.
16: . Evaluate the objective function:
17: Update ∆Fk({ν}) as the cumulative moving average of (4.14) over initial condi-

tions.
18: . Update to decrease objective function:
19: Update Fk({ν}) to decrease the objective function: Fk({ν}) → Fk({ν}) −

λ∆Fk({ν}).

In this case, there are only self-interactions (K = 1) described by ν(t) with basis

function F (ν(t)). The dynamic Boltzmann distribution is:

p̃(n,t) = 1
Z

exp
[
−nν(t)

]
. (4.16)

Using the fact that

〈n〉p̃ = 1
eν−1 (4.17)
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and from the CME
d〈n〉p
dt

= (kb−kd)〈n〉p (4.18)

gives the analytic solution for the basis functions

F (ν) = (kb−kd)(e−ν−1). (4.19)

This solution is reproduced using Algorithm 1, as shown in Figure 4.2 for kd = 3kb/2. Here,

the solution is constructed on a grid of ν ∈ [0+,3.0] with spacing ∆ν = 0.1, with maximum

integration time T = 1 (arbitrary units). The learning rate is decreased exponentially over

iterations to improve convergence. The convergence of the algorithm is shown in Figure 4.3.
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Figure 4.2: Learned basis function for the simple annihilation process A→∅ after 40
iterations, from a uniform initial condition.

Example: Two Basis Functions Controlling Mean and Variance

Consider again the process of the previous section, but with K = 2 basis functions

ν1(t) and ν2(t) controlling the mean and variance in the number of particles. The dynamic

Boltzmann distribution is:

p̃(n,t) = 1
Z

exp
−nν1(t)−

(
n

2

)
ν2(t)

. (4.20)
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Figure 4.3: Left: The convergence of the action S as it is minimized over iterations
following Algorithm 1. Trajectories (grey) for individual η, normalized to start at one
and end at zero, and their mean (black). Right: The minimization of the variation in
the action δS/δF (ν), as a function of the position to vary ν. Trajectories (grey) at each
ν, and their mean (black).
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Figure 4.4: Top: The variational term δν(t)/δF (ν = 2.0) for several initial conditions
η = 1.5, . . . ,1.9 as a function of time, obtained by solving (4.15) numerically. Bottom:
The solution trajectories ν(t) starting from these η. Only when the solution trajectory
is close to ν(t) = 2.0 and thereafter does varying the basis function F at this point have
a non-zero effect.
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This may be interpreted as a Gaußian distribution in the number of particles, provided

we treat n as continuous and extend its range to ±∞, or consider systems with means far

from n = 0. In this case, the mean µ and variance σ2 can be related to the interaction

functions as µ = 1/2−ν1/ν2 and σ2 = 1/ν2. The differential equations derived from the

CME for the moments of this system are:

dµ

dt
= (kb−kd)µ,

dσ2

dt
= 2(kb−kd)σ2 + (kb+kd)µ,

(4.21)

which can be converted to analytic solutions for the basis functions:

F1(ν1,ν2) =ν1
(
kd−kb+ (kb+kd)ν1

)
− ν2

2
(
kb−kd+ (kb+kd)ν1

)
,

F2(ν1,ν2) =− ν2
2

(
kd (−4−2ν1 +ν2) +kb (4−2ν1 +ν2)

)
.

(4.22)

These are shown in Figure 4.5.

Figure 4.6 shows the variational terms δν1(t)/δF1(ν1,ν2) and δν2(t)/δF1(ν1,ν2),

resulting from Algorithm 1 and determined by (4.15). Interestingly, the self-varying term

δν1(t)/δF1(ν1,ν2) more closely resembles the multivariate delta-function appearing in (4.15),

while the cross term δν2(t)/δF1(ν1,ν2) shows a greater temporal memory of the solution

trajectory.

4.3.2 Solvable systems

We next consider special cases where analytic solutions for the basis functionals are

possible, to motivate a parameterization leading to a solvable version of the variational

problem (4.11).
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Figure 4.5: The true basis functions (4.22) for the Galton-Watson system. Left:
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Figure 4.6: Two of the four variational terms for the Galton-Watson system using two
basis functions. Left: δν1(t)/δF1(ν1,ν2). Right: δν2(t)/δF1(ν1,ν2). The black dashed
line shows the solution trajectory. The initial conditions are (η1,η2) = (−2.5,2.0), with
reaction rates kd = 3kb/2 = 1.5. The effect of the mixing term δν2(t)/δF1(ν1,ν2) is
lower in magnitude but persists longer over time. Note that the absolute magnitude
of the spread is related to the approximation chosen for the delta function in (4.15), a
normalized multivariate Gaußian with variance of 0.1 in both directions ν1,ν2.

Gaußian Distributions

The well-mixed case (4.12) is the MaxEnt distribution consistent with
〈(

n
k

)〉
p

for k = 1, . . . ,K. If K = 2, then (4.12) may be interpreted as a Gaußian distribution in
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continuous n, as discussed in the previous section. Generalizing these results, the basis

functions are generally given by:

F1(ν1,ν2) =−ν2
dµ

dt
−ν1ν2

dσ2

dt
,

F2(ν1,ν2) =−ν2
2
dσ2

dt
,

(4.23)

where dµ/dt, dσ2/dt are evaluated from the CME and expressed in terms of ν1,ν2. Here, a

moment closure approximation must be applied if the reactions are greater than unimolecular

in number of reagents. For example, the higher order moments appearing in the CME may

be approximated by those of the reduced model p̃ and expressed in terms of lower order

µ,σ2 following the well known property of Gaußian distributions. This closure technique is

described further in Section 4.4.1.

Diffusion from Point Source

In the spatial case, consider a diffusion process of a fixed number of particles n with

diffusion constant D spreading out from a point source at x0. The analytic solution to the

CME is:

p(x, t) = (4πDt)−n/2 exp
− n∑

i=1

(xi−x0)2

4Dt

, (4.24)

reflecting that only self interactions (K = 1) are necessary to describe the process. The

reduced model (4.2) becomes:

p̃(x, t) = 1
Z

exp
− n∑

i=1
ν(xi, t)

. (4.25)

It is straightforward to verify that p(x, t) = p̃(x, t) if

ν(y, t) = ln
(

1 + 1
n

)
+ 1

2 ln(4πDt) + (y−x0)2

4Dt . (4.26)
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Consequentially, from ∂tν(y, t), the basis functional is:

F [ν(y, t)] =D∂2
yν(y, t)−D

(
∂yν(y, t)

)2
. (4.27)

Unimolecular Reaction-Diffusion

For reaction networks that involve only diffusion and unimolecular reactions, two

key properties hold for the CME solution:

1. Separable spatial and particle number distributions p(n,x) = p(n)p(x) where each

distribution is normalized ∑n p(n) = 1 and
∫
dx p(x) = 1.

2. Independence of spatial distribution p(x) = p(x1)p(x2) . . .p(xn) where each
∫
dx p(x) =

1 is normalized. This assumes that initial p(xi) are independent - otherwise, a fixed

mixture of independent components must be considered.

Analogous to the purely diffusive process above, this allows analytic solutions to

the inverse Ising problem by imposing these conditions upon the dynamic Boltzmann

distribution p̃. Here, we exploit the fact that multiplication of Boltzmann distributions

results in addition of the energy functions.

Introduce a single interaction function ν(x,t) to capture the diffusion process and

the usual ν1(t), . . . ,νK(t) to describe the reactions (for brevity, omit further time arguments

in this section). Furthermore, impose the normalization
∫
dxexp

[
−ν(x)

]
= 1. The dynamic

Boltzmann distribution becomes:

p̃(n,x) = p̃(n)p̃(x) = p̃(n)p̃(x1)p̃(x2) . . . p̃(xn),

p̃(n) = 1
Z

exp
− K∑

k=1

(
n

k

)
νk

,
p̃(x) = exp

[
−ν(x)

]
,

(4.28)
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where the partition function is

Z =
∑
n

∫
dx p̃(n,x) =

∑
n
p̃(n). (4.29)

The distribution p̃(n,x) is the MaxEnt distribution consistent with the moments 〈
(
n
k

)
〉 for

all k = 1, . . . ,K, as well as the spatial moment:

〈
n∑
i=1

δ(y−xi)
〉

=
∑
n

∫
dx

n∑
i=1

δ(y−xi)p̃(n,x) = exp
[
−ν(y)

]
〈n〉 , (4.30)

such that the solution to the inverse Ising problem is:

ν(y) = ln
(

〈n〉〈∑n
i=1 δ(y−xi)

〉) . (4.31)

The solution for the inverse Ising problem for 〈
(
n
k

)
〉 is independent of this spatial moment,

and analytically possible e.g. for K = 1 or 2, as demonstrated in Sections 4.3.1 and 4.3.2

above.

Taking the time derivatives of these solutions ν̇ and ν̇k and using the CME to

derive differential equations for the moments gives the basis functionals. For unimolecular

reactions, the diffusion process does not affect the reactions, such that the functional

controlling ν is always that of diffusion (4.27). For example, for a branching random walk

consisting of diffusion from a point source and the Galton-Watson process with K = 2, the

basis are the functional (4.27) and the functions (4.22).

4.3.3 Parameterizations for Spatially Heterogeneous Systems

For reaction-diffusion systems that involve reactions greater than unimolecular in

number of reagents, it generally becomes difficult to analytically solve the inverse Ising

problem and consequentially identify basis functionals. However, an algorithmic solution
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remains possible, where we guess a local parameterization of the functional (4.3) based on

the analytic solutions presented above.

Let β,y be of length k, and use the notation

{ν(β,y, t)}=
{
νk′(β〈i〉kk′ ,y〈i〉kk′ , t) ∀ 〈i〉

k
k′ : 1≤ k′ ≤ k

}
. (4.32)

Then choose the spatially local parameterization of Fk in (4.3):

d

dt
νk(β,y, t) =F (0)

k ({ν(β,y, t)}) +
k∑

λ=1

F (1,λ)
k ({ν(β,y, t)})

∑
〈i〉kλ

λ∑
m=1

(
∂mνλ(β〈i〉kλ ,y〈i〉kλ , t)

)2

+F
(2,λ)
k ({ν(β,y, t)})

∑
〈i〉kλ

λ∑
m=1

∂2
mνλ(β〈i〉kλ ,y〈i〉kλ , t)

,
(4.33)

with initial condition νk(β,y, t= 0) = ηk(β,y). Here, ∂m denotes the derivative with respect

to the m-th component of y〈i〉kλ , and F
(γ)
k ({ν(β,y, t)}) for (γ) = (0),(1,λ),(2,λ) are local

functions, i.e. functions of the arguments on the left hand side of (4.33).

The variational problem (4.11) now becomes

δS[{ν[{F}]}]
δF

(γ)
k ({ν(β,y)})

=
K∑
k′=1

∑
β′

∫
dy′

∫
dt′

(
µk′(β′,y′, t′)− µ̃k′(β′,y′, t′)

) δνk′(β′,y′, t′)
δF

(γ)
k ({ν(β,y)})

= 0

(4.34)

for (γ) = (0),(1,λ),(2,λ), where β′,y′ are of length k′.

Analogously to the well-mixed case, it is possible to derive a PDE system governing

the variational term δνk′(β′,y′, t′)/δF
(γ)
k ({ν(β,y)}). In Appendix B.1.2, an illustrative

example is derived for a diffusion process.

Equations (4.33,4.34) together form a PDE-constrained optimization problem, which

may be solved analogously to Algorithm 1, with additional spatial axes.
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Example: Branching Random Walk

Consider a branching random walk consisting of the Galton-Watson process and

diffusion from a point source with rate D in one spatial dimension and one species. From

the true solutions for the basis functionals (4.27,4.22), use one spatial interaction function

ν(y, t) and two purely temporal ν1(t),ν2(t), and further restrict the parameterization (4.33)

of the basis functionals to be

dν(y, t)
dt

=F [ν(y, t)] = F
(1)(ν(y, t))

(
∂yν(y, t)

)2
+F

(2)(ν(y, t))∂2
yν(y, t),

dνk(t)
dt

=Fk[ν1(t),ν2(t)] = F
(0)
k (ν1(t),ν2(t))

(4.35)

for k = 1,2. The variational problem is

δS

δF
(γ)(ν)

=
∫
dy′

∫
dt′

(
µ1(y′, t′)− µ̃1(y′, t′)

) δν(y′, t′)
δF

(γ)(ν)
= 0, (4.36)

δS

δF
(0)
k (ν1,ν2)

=
2∑

k′=1

∫
dt′

〈(n
k′

)〉
p(t′)
−
〈(

n

k′

)〉
p̃(t′)

 δνk′(t′)
δF

(0)
k (ν1,ν2)

= 0 (4.37)

for γ = 1,2.

Differential equations governing the variational terms δν(y′, t′)/δF (γ)(ν) for γ =

1,2 are derived in Appendix B.1.2, given by (B.15). Differential equations governing

δνk′(t′)/δF
(0)
k (ν1,ν2) are given by (4.15).

The optimization problem (4.36,4.37) subject to the PDE-constraints (4.35) may

be solved algorithmically using Algorithm 1 in each Fk,F
(1)
,F

(2), analogously to the

well-mixed case. We note that the true solutions are given by (4.27,4.22), in particular:

F
(1) =D and F (2) =−D.

Figure 4.7 plots the spatial variational terms resulting from the true basis functionals.

Here, the reaction rates used are as before kd = 3kb/2 = 1.5, with a diffusion constant of

D = 1. Contrary to the well-mixed case, these terms do not resemble step functions, but
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rather exhibit some extended temporal dynamics.
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Figure 4.7: Branching random walk with diffusion in 1D estimated by Algorithm 1.
Top: The variational term δν(y,t)/δF (2)(ν = 1.0) as a function of time at several spatial
locations y = 0.25,0.5,0.75,1. Here, F (1) =D,F

(2) =−D are the true solutions. Middle:
δν(y,t)/δF (1)(ν = 1.0). Bottom: The solution trajectories ν(y,t), starting from a point
source. Contrary to the well-mixed case, the variational terms do not resemble step
functions at ν = 1.0, but rather exhibit some extended temporal dynamics.

4.4 Lattice systems in 1D

The PDE-constrained optimization problems above are the general solution for

finding the basis functionals that govern the time evolution of the reduced MaxEnt model.

Here, we present a more efficient machine learning approach for learning the basis functions

from the solutions of simple, analytically solvable models. In Section 4.4.1, we present a
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method for finding such analytic solutions in the discrete lattice limit, and present examples

for a variety of simple processes in Section 4.4.2. In Section 4.4.3, we demonstrate the

utility of using such analytic solutions in a Boltzmann machine-like learning algorithm,

and further in Section 4.4.4 to learn non-linear combinations of solutions using artificial

neural networks (ANNs).

4.4.1 Mapping to Spin Glass Systems in 1D

At low particle densities, a feasible model of a reaction-diffusion system in one

spatial dimension and one species is that of a 1D lattice in the single occupancy limit. Let

the spin values occupying each lattice site be si ∈ {0,1}, for all i= 1, . . . ,N , denoting the

absence or presence of a particle.

The reduced model (4.2) now becomes the discrete analogue. We note that this

model is consistent with the continuous version in some parameter regime where the

separation between molecules is large compared to the interaction radius. By including only

self-interactions described by an interaction function h(t), and two particle nearest-neighbor

interactions J(t), we obtain the well known Ising model, with partition function:

Z =
∑
{s}

exp
h(t)

N∑
i=1

si+J(t)
N−1∑
i=1

sisi+1

. (4.38)

This may be evaluated explicitly using the standard transfer matrix method. In the

thermodynamic limit, lnZ ≈ λN+ is analytically accessible, where λ+ is the largest eigenvalue

of the transfer matrix.

The inverse Ising problem has the solution:


〈∑N

i=1 si
〉

(t)〈∑N−1
i=1 sisi+1

〉
(t)

=

∂h lnZ

∂J lnZ

 . (4.39)
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Taking the derivatives of both sides of (4.39)

 d
dt

〈∑N
i=1 si

〉
d
dt

〈∑N−1
i=1 sisi+1

〉
=

 ∂2
h lnZ ∂h∂J lnZ

∂h∂J lnZ ∂2
J lnZ


 dh
dt

dJ
dt

 . (4.40)

The time derivatives of the moments on the left may be obtained directly from the CME

ṗ=Wp using the Doi-Peliti formalism described in Chapter 2. If the system is linear, these

may be expressed further in terms of h,J using (4.39), and the basis functions are given

directly by inverting (4.40). If the system is non-linear, the presence of a moment hierarchy

requires an approximation in the form of a moment closure technique. Here, we choose to

express the higher order moments that appear through the CME in terms of h,J , which

is possible for any higher order moment since the partition function (4.38) is analytically

accessible. As a result of inverting (4.40):

F̃h(h,J)

F̃J(h,J)

=

 ∂2
h lnZ ∂h∂J lnZ

∂h∂J lnZ ∂2
J lnZ


−1

×

 d
dt

〈∑N
i=1 si

〉
d
dt

〈∑N−1
i=1 sisi+1

〉
 , (4.41)

where the RHS has been expressed in terms of h,J as described above, and we use the

notation F̃h, F̃J to indicate that these are generally only approximations to the true basis

functions Fh,FJ , and only exact for systems with closed moments. Effectively, we have

replaced the probability distribution p in the CME ṗ = Wp by the dynamic Boltzmann

distribution p̃, and evaluated the effect of the operator on the RHS on this new distribution.

The analytic solution to the 1D inverse Ising problem therefore provides an elegant approach

to moment closure (see Ref. [10],[25] for related MaxEnt approaches to moment closure).

Similar extensions to 2D Ising models [48] are likewise possible, and possibly to 3D as

well [49].

Furthermore, we note that analogous to the continuous case proven in Proposition 1,
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the linearity of reaction operators in the CME extends to the basis function approximations

F̃ (regardless of whether Z is analytically accessible as in the 1D case). This requires that

the inverse Ising problem has not changed, as discussed further in Section 4.4.3.

4.4.2 Analytic Approximations to Basis Functions of Simple Re-

action Motifs

Figure 4.8 shows the basis function approximations calculated using the 1D Ising

model (4.41) for several simple unimolecular reaction processes. Note that the reaction

rates/diffusion constant provide an overall multiplicative factor to each process. Computer

algebra systems can be used to determine these analytic forms, which contain sums on the

order of ten to a hundred terms in length, depending on the operator.
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Figure 4.8: Basis functions (4.41) for several simple reaction schemes in one species.
Horizontal, vertical axis: h,J ∈ [−4,4]. The magnitudes have been scaled to [−1,1],
since the reaction rate/diffusion constant provides an arbitrary scaling factor.

Generalizing these simple systems, we solve for the basis function approximations

of the trivalent reaction A+B→ C with its reverse process C→ A+B. This process is

fundamentally important as a generalization of many simple biochemical processes, and

has been studied extensively [50, 51]. For example, it is the building block of the broadly
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applicable substrate-enzyme-product (SEP) motif S +E 
 C → P +E, where S,E,P

denote the substrate, enzyme, and product (see Section 4.4.4 below).

In the Ising model formalism, the description of this process involves 9 time dependent

interaction functions hA,hB,hC ,JAA,JAB,JAC ,JBB,JBC ,JCC , forming the reduced model:

Z =
∑
{s}

∑
{α}

exp
 N∑
i=1

hαi(t)si+
N−1∑
i=1

Jαi,αi+1(t)sisi+1

 (4.42)

where the species label αi ∈ {A,B,C}, and we implicitly note that the sum ∑
{α} runs only

over occupied sites si = 1. Figure 4.9 shows several 2D slices of three of the nine basis

function approximations for the forward process A+B→ C.

By including species labels, (4.41) leads to analytic expressions containing on the

order of hundreds of terms. Here, we used a numerical strategy as described in Appendix B.2

for evaluating the basis functions over the chosen domain. While a computer algebra system

may be employed as before, this strategy is computationally faster.

hB vs. hA JAB vs. hA JAB vs. hB hC vs. hA JAC vs. hA JAC vs. hC

F̃JACF̃hA

Figure 4.9: Basis function approximations F̃hA
, F̃JAC

corresponding to the forward
trivalent reaction A+B→C with rate k = 1. Each is a 9 dimensional function, of which
2D slices are shown, holding all other parameters at zero. The top row shows the basis
function, while the bottom row shows the corresponding moments controlled by these
parameters hA,JAC . The chain length used is N = 1000. The ranges for all horizontal,
vertical axes are [−2,2].
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4.4.3 Boltzmann Machine-Style Learning Algorithm for Dynam-

ics

The basis function approximations derived above constitute a space of possible

reduced dynamics. Here, we consider using these analytic insights to describe large spatially

distributed reaction networks in 1D. This approach faces two key problems:

1. For non-linear systems, p̃ obeying (4.41) will over time diverge from the MaxEnt

distribution consistent with the CME moments due the moment closure approximation

made. As a fundamental consequence of this moment hierarchy, it is not possible

to find exact basis functions over the entire interaction parameter space (e.g. h,J).

Another way to see this is that trajectories of the CME system will intersect in h,J

space.

However, we postulate that it may be possible to learn approximately well the basis

functions for a single trajectory (from a single initial condition) which does not

self-intersect over some domain. This model may be used for extrapolation with

reasonable accuracy close to the stochastic trajectory.

2. For large reaction networks, the basis functions are generally not linear in the basis

functions of individual processes because the collection of interaction functions is

not fixed, violating the assumption in Proposition 1. For example, consider the

process A→ B→ C. Here, nine basis functions are required to capture all means

and nearest neighbor correlations, such that (4.41) is nine dimensional. Denote these

by β = A−1m where β denotes the basis functions, m the time evolving moments,

and A the matrix of partition function derivatives.

Next, consider the separate processes A→ B and B→ C, described by five basis

functions each. Let these be denoted by β(r) = (A(r))−1m(r) for each of the two

reactions r. Clearly, not all nine basis functions in β are present in each β(r).
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Furthermore, for those that are present in both, it is not necessarily true that the

i-th basis function is expressible as βi 6= β
(1)
j +β(2)

k for appropriate j,k.

Generally, a reaction network involves more interaction parameters than each of

the individual processes, such that Proposition 1 does not apply. It is only for a

subset of networks, such as reaction networks in one species, where the linearity

in the CME extends exactly to the basis functions. Regardless, we postulate that

many networks may be described approximately well by linear combinations of basis

functions corresponding to individual processes.

In light of these postulates, we return to the variational problem (4.14) and its

PDE-constraint. In the discrete lattice case considered in Section 4.4.1, it becomes for each

γ = h,J :

∫ ∞
0

dt′
(
µ̃(t′)−µ(t′)

) δh(t′)
δFγ(h,J) +

∫ ∞
0

dt′
(
∆̃(t′)−∆(t′)

) δJ(t′)
δFγ(h,J) = 0, (4.43)

where we have used the notation µ,∆ to denote the average number of particles, nearest

neighbors (NN) over p, and similarly µ̃,∆̃ to denote averages over p̃.

Here, we exploit the analytic results derived above to simplify this problem and derive

an efficient Boltzmann-machine type learning algorithm for the dynamics. In particular, we

assume that the true basis functions are linear combinations of the approximations derived

in Section 4.4.2 above, given by:

dh

dt
= Fh(h,J) =

∑
r
θ(r)F̃

(r)
h ,

dJ

dt
= FJ(h,J) =

∑
r
θ(r)F̃

(r)
J .

(4.44)

Here, the reaction rates and diffusion constant are all set to unity, such that the coefficients

θ indicate the rates. The variational problem now turns into a regular optimization problem
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for the coefficients θ that will yield at all times the MaxEnt distribution consistent with the

CME moments. The optimization problem becomes: Subject to the PDE constraint (4.44),

solve:

∫ ∞
0

dt′
(
µ̃(t′)−µ(t′)

) ∂h(t′)
∂θ(s) +

∫ ∞
0

dt′
(
∆̃(t′)−∆(t′)

) ∂J(t′)
∂θ(s) = 0, (4.45)

where the derivative terms are given by the solution to the ordinary differential equation

system

∂

∂t′

(
∂h(t′)
∂θ(s)

)
=F̃ (s)

h + ∂h(t′)
∂θ(s)

∑
r
θ(r)∂F̃

(r)
h

∂h
+ ∂J(t′)
∂θ(s)

∑
r
θ(r)∂F̃

(r)
h

∂J
,

∂

∂t′

(
∂J(t′)
∂θ(s)

)
=F̃ (s)

J + ∂h(t′)
∂θ(s)

∑
r
θ(r)∂F̃

(r)
J

∂h
+ ∂J(t′)
∂θ(s)

∑
r
θ(r)∂F̃

(r)
J

∂J
,

(4.46)

with initial condition ∂h(0)/∂θ(s) = ∂J(0)/∂θ(s) = 0.

Parameter estimation is greatly simpler to solve than the function estimation (4.43).

Furthermore, the variational problem (4.46) is significantly simplified, since F̃ (r) and

consequentially its derivatives are analytically accessible. We capitalize upon these practical

qualities in Algorithm 2, which solves this problem in a Boltzmann-machine learning style

approach.

As an illustrative example, we apply Algorithm 2 to a branching and annihilating

random walk (BARW) on a 1D lattice, described by the three processes: A→ A+A with

rate kb = 10, A+A→ 0 with rate ka = 10, and diffusion with constant D = 10. Extensive

theoretical work has been dedicated to studying BARWs in the context of universality

classes, in particular the directed percolation universality class [52, 53].

Stochastic simulations are used to generate training data for this system on a chain

of length N = 100 for maximum time of T = 1 with timestep dt= 0.01. Here, we follow the

numerical procedure described in Ref. [52]. The basis functions used in (4.44) are those of
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Algorithm 2 Boltzmann Machine-Style Learning of Dynamics
1: Initialize
2: Initial θ(r) for all r.
3: Max. integration time T .
4: A formula for the learning rate λ.
5: Time-series of lattice spins {s}(t) from stochastic

simulations from some known IC h0,J0.
6: Fully visible MRF with NN connections and as many

units as lattice sites N .
7: while not converged do
8: . Generate trajectory in reduced space:
9: Solve the PDE constraint (4.44) with IC h0,J0

for 0≤ t≤ T .
10: . Awake phase:
11: Evaluate true moments µ(t),∆(t) from the

stochastic simulation data {s}(t).
12: . Asleep phase:
13: Evaluate moments µ̃(t),∆̃(t) of the Boltzmann

distribution by Gibbs sampling.
14: . Update to decrease objective function:
15: Solve (4.46) for derivative terms.
16: Update θ(s) to decrease the objective function

for all s by taking: θ(s)→ θ(s)−λ× (4.45).
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Figure 4.10: The 1st and 2nd (mean and NN) moments of the BARW system obtained
from stochastic simulation (dashed) and by integrating the PDE constraint (4.44) and
using Gibbs sampling in the asleep phase of Algorithm 2 (solid). Left: using initial θ(s)

0
reveals the limitations of moment closure approximation. Right: after 400 iterations,
the coefficients have adjusted to more accurately capture the true CME dynamics.
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Figure 4.11: The coefficients in the PDE constraint converging over 400 iterations of
Algorithm 2 applied to the BARW system, starting from the parameters used in the
stochastic simulations.

the three processes present, as shown in Figure 4.8. The initial coefficients θ(s)
0 used are

the known reaction rates.

Figure 4.10 shows the moments of the BARW system. Due to the moment closure

problem, the system predicted by solving the constraint equations diverges from the true,

even though the true reaction rates are used as coefficients θ(s)
0 . After running 400 iterations

of Algorithm 2, the new coefficients lead to much closer agreement to the true system.

Figure 4.11 shows the coefficients converge over the iterations. In particular, the

effective rates for bimolecular annihilation and branching have decreased, while the effective

diffusion constant has increased. Since the final values are sensitive to the initial θ(s)
0 chosen,

an L2 regularization term is included in the action. A further constraint in Algorithm 2 to

keep θ(s) positive enforces the connection to effective reaction rates.

4.4.4 Learning Non-linear Combinations of Basis Functions

As a more general approach than linear combinations, we use ANNs (artificial neural

networks) to describe non-linear combinations of basis functions. Consider the SEP system
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diffusing on a 1D lattice, described by the reactions:

S+E
k1−−⇀↽−−
k−1

C
k2−→ P +E. (4.47)

The full Ising model for this system consists of four self interactions and 10 NN coupling

parameters.

Figure 4.12 shows several moments of this system evolving in time from stochastic

simulations. Here, the parameters used are: k1 = 10,k−1 = 0.1,k2 = 0.5, max. time T = 1

with timestep 0.01, and lattice length N = 100. The system evolves from an initial lattice

generated by Gibbs sampling with parameters hS = 0.5,hE = 1,hC =−1,hP =−1, and all

NN terms set to zero.

The input to the ANN are the basis functions for the three separate processes, each

of which belongs to the trivalent reaction motif of Figure 4.9 thereby contributing 9 basis

functions. Additionally, the two basis functions for the diffusion of each of the four species

is included from Figure 4.8, for a total of 35 inputs. The other layers in the ANN are two

layers of 40 units, and an output layer of 14 units, with tanh activation functions between

each layer. Two thirds of the total length T of the timeseries are used for training. These

are converted to trajectories in interaction parameter space using Boltzmann machine

learning, and smoothed using a low-pass filter before being used to evaluate the 35 input

basis functions. The corresponding outputs to be learned are the time derivatives of these

14 parameters, also smoothed by a low-pass filter.

The network learns the dynamics of these parameters to high precision. We infer

from the fast training times that the usage of these analytic solutions as input greatly

reduces the difficulty of training the network from the interaction parameters directly.

Figure 4.12 shows the extrapolated parameters and corresponding moments, com-

pared to the remaining third of the simulation time. These extrapolations are generally
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linear in interaction space, and may diverge quickly, such as for hS . However, the moments

show considerable robustness to these variations, suggesting that using ANNs for extrapo-

lation is possible. This has promising implications for further development in multiscale

simulation algorithms.

A further feature learned by the ANN is a moment closure approximation for the

dynamics of JSP , and the corresponding NN moment it controls. This parameter is not

included in any of the basis functions or inputs to the ANN. The basis function learned,

shown in Figure 4.12, therefore expresses the dynamics of this moment in terms of the

interactions made available as input to the network. Similar extensions to higher order

moments are likewise possible.
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Figure 4.12: (a) Trajectories of the SEP system from stochastic simulation, and
extrapolated values from the trained ANN. The divergence of the predicted and true
values in moment space is smaller than in interaction parameter space, suggesting a
stability in the observable quantities of the model to small errors. (b) The derivative
learned by the ANN for the moment. A two dimensional slice is shown through this 14
dimensional function. The black line shows the trajectory of the training data, while the
dot indicates the evaluation point for this slice, chosen at the end of the training data
(gray vertical line in (a)). All other parameters than hS ,hP are held fixed at this point.
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4.5 Discussion and Conclusions

This chapter presented a new approach to model reduction of spatial chemical

systems. Slowly time-evolving MaxEnt models are employed to capture the key correlations

in the system. This approach is particularly useful for multiscale problems, where different

spatial and temporal correlations become more or less relevant over time to accurately

describe the system. For example, in synaptic level neuroscience, the stochastic influx of

signaling molecules in the post-synaptic spine produces complex spatial correlations between

ion channels and downstream targets, but these are less relevant during quiescent periods.

We anticipate that such problems stand to benefit greatly from modeling approaches that

are able to adjust which correlations are included to optimize simulation efficiency and

accuracy.

A general model that is functional in nature is introduced to describe dynamic

Boltzmann distributions. This extends and formalizes ideas originally developed in GCCD

in Ref. [10] - in particular:

1. A general variational problem has been formulated to determine the functions in the

dynamical system controlling the interaction parameters. This takes the form of a

PDE-constrained optimization problem.

2. The reduced model has been extended to capture spatial correlations, with particular

relevance to Biological applications. By motivating parameterizations of the function-

als from analytically solvable cases, practical optimization algorithms for learning

the dynamics of spatial systems are made possible.

3. ANNs have been employed to learn non-linear combinations of basis functions, derived

for individual reaction processes using the aid of computer algebra systems.

Mapping the chemical system onto a spin lattice allows a direct connection to the

more traditionally formulation of a Boltzmann machine. Here, the connection to the new
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learning algorithm is evident in (4.43), and we anticipate this will suggest numerous further

applications to diverse areas of machine learning where estimating the dynamics of a time

series is required. Including arbitrary spatial correlations beyond NN in the lattice model

may be of further interest in pursuit of 3D simulations.

Numerous strategies are possible for improving the efficiency of the PDE-constrained

optimization problem formulated here, such as adjoint methods [47]. In this work, we have

shown that the complexity of this problem can be greatly reduced by instead learning linear

and non-linear combinations of analytically accessible approximations. Deconstructing the

problem in this way can offer physical insight into a complex reaction system, such as in

Section 4.4.3 where effective reaction rates are learned. Future work in this direction may

further explore these principled methods for integrating human intuition with machine

inference in the model reduction process.
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Chapter 5

Learning problem for spatial

dynamic Boltzmann distributions

In this chapter, we introduce a general learning problem for spatial dynamic Boltz-

mann distributions. In the previous chapter, we have discussed the state estimation

subproblem to determine the parameters in the energy function. At an instant in time,

this can be done using the Boltzmann machine learning algorithm, or using expectation

maximization. A second subproblem is to determine the parameters in the differential

equations that link snapshots in time. A single PDE-constrained optimization problem is

formulated in this chapter to address both subproblems. This chapter is taken with edits

from [17]. Further work shows examples for physics-based Gaussian graphical models.

5.1 Spatial dynamic Boltzmann distributions

In this section, we introduce the reduced model for a spatiotemporal distribution

and its dynamics in continuous space from [16], and formulate the learning problem using

adjoint methods. We consider the specific application of a reaction-diffusion system, but
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note that the methods are also applicable to other spatiotemporal systems.

The state of a reaction-diffusion system at some time t is described by n particles

of species labels α located at positions x in generally continuous 3D space (each xi for

i= 1, . . . ,n is a coordinate in 3D space). Let the true distribution over system states be

denoted by p(n,α,x, t), which evolves in time according to the chemical master equation

(CME).

To define the reduced model, introduce k-particle interaction functions

νk(α〈i〉nk ,x〈i〉nk , t), (5.1)

where 〈i〉nk denotes any ordered subset of k indexes with each index in {1, . . . ,n}. Given

a set of such interaction functions {ν}Kk=1 up to cutoff order K, define a spatial dynamic

Boltzmann distribution as one of the form:

p̃(n,α,x, t;{ν}) = 1
Z[{ν}] exp

− K∑
k=1

∑
〈i〉nk

νk(α〈i〉nk ,x〈i〉nk , t)

, (5.2)

where the sum over 〈i〉nk iterates over unique k-th order interactions between n particles,

and the partition function is

Z[{ν}] =
∞∑
n=0

∑
α

∫
dx exp

− K∑
k=1

∑
〈i〉nk

νk(α〈i〉nk ,x〈i〉nk , t)

. (5.3)

Boltzmann distributions are maximum entropy (MaxEnt) distributions, where each

interaction function νk(α〈i〉nk ,x〈i〉nk , t) controls a corresponding moment µk(α〈i〉nk ,x〈i〉nk , t),

given by:

µk(α〈i〉nk ,x〈i〉nk , t) =
∞∑
n′=0

∑
α′

∫
dx′ p(n′,α′,x′, t)

∑
〈j〉n

′
k

δ(x〈i〉nk −x
′
〈j〉n

′
k

)δ(α〈i〉nk −α
′
〈j〉n

′
k

), (5.4)
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that is, the average number of k-sized tuplets of particles of species α〈i〉nk at locations x〈i〉nk .

Note that α′ and x′ are of size n′. Section 5.1.3 shows an algorithm for sampling these

spatial moments.

5.1.1 Moment matching

Given a set of training data drawn from p(n,α,x, t) at some instant in time, the BM

learning algorithm determines parameters in the energy function such that the instantaneous

distribution (5.2) is the MaxEnt dist. consistent with the moments in the dataset. To

learn a reduced model of a system that evolves in both time and space continuously, we

seek the distribution that is at all times the MaxEnt solution. Define as the action the

KL-divergence between the true and reduced models, p and p̃, over all times:

S =
∫ tf

t0
dtDKL(p||p̃), (5.5)

where the Lagrangian is L(t;{ν}) =DKL(p||p̃) for

DKL(p||p̃) =
∞∑
n=0

∑
α

∫
dx p(n,α,x, t) ln p(n,α,x, t)

p̃(n,α,x, t;{ν}) . (5.6)

Minimizing S is thus equivalent to maximizing the log-likelihood of the observed data

given the interaction functions, i.e. L({ν};α,x, t) = log p̃(α,x, t;{ν}). Other approaches

for modeling time series are discussed in Section 6.1.1.

The condition for extremizing the action follows from the chain rule as

δS =
∫ tf

t0
dt
∞∑
n=0

∑
α

∫
dx

K∑
k=1

∑
〈i〉nk

∆µk(α〈i〉nk ,x〈i〉nk , t)δνk(α〈i〉nk ,x〈i〉nk , t) = 0, (5.7)

where

∆µk(α〈i〉nk ,x〈i〉nk , t) = µ̃k(α〈i〉nk ,x〈i〉nk , t)−µk(α〈i〉nk ,x〈i〉nk , t), (5.8)
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where µ and µ̃ are averages taken over p and p̃. This appearance of a difference of moments

is the common result from using the KL-divergence in the objective functional.

5.1.2 An adjoint method learning problem for spatial dynamic

Boltzmann distributions

Introduce for each interaction function νk(α〈i〉nk ,x〈i〉nk , t) a functional model:

d

dt
νk(α〈i〉nk ,x〈i〉nk , t) = Fk[{ν}](α,x, t), (5.9)

over some domain x ∈ Ω with boundary Γ, with initial condition νk(α〈i〉nk ,x〈i〉nk , t0) =

ηk(α〈i〉nk ,x〈i〉nk ), and where the notation {ν} denotes {ν}= {νk}Kk=1. We use F to denote a

functional, allowing for example a PDE model to be introduced. Note that the arguments

to the left hand side may also appear on the right, for example through a spatial derivative

term ∇νk(α〈i〉nk ,x〈i〉nk , t).

In practice, boundary conditions on Γ for (5.9) must also be introduced. As these

are problem specific, they are intentionally left out of the derivations in this section. In

Section 5.3, an example of the learning problem is presented where boundary conditions

are included.

Introduce vector notation1 ν(α,x, t) and F [{ν}](α,x, t) for the left and right hand

sides of (5.9), which contain N =∑K
k=1

(
n
k

)
entries, one for every possible (k,〈i〉nk) in some

order i= 1, . . . ,N . To enforce the constraint (5.9), define the Lagrangian as the functional:

L[{ν},{ξ}](t) =DKL(p||p̃)

+
∞∑
n=0

∑
α

∫
dx ζᵀ(α,x, t)

(
dν(α,x, t)

dt
−F [{ν}](α,x, t)

)
,

(5.10)

1In this notation, the dot product is: aᵀ(α,x)b(α,x) =
∑K
k=1

∑
〈i〉nk

a(α〈i〉nk ,x〈i〉nk )b(α〈i〉nk ,x〈i〉nk ).
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where we have introduced Lagrange multiplier functions ζ(α,x, t) corresponding to ν.

Since the constraint is satisfied, then the action is as before S =
∫ tf
t0 dt L[{ν},{ξ}](t) where

{ξ}= {ξk}Kk=1.

Introducing perturbations δν(α,x, t) to the interaction functions gives as condition

for extremizing the action:

δS =
∫ tf

t0
dt
∞∑
n=0

∑
α

∫
dx δνᵀ(α,x, t)

∆µ(α,x, t)− dζ(α,x, t)
dt

− δJ [{ν},{ζ}](t)
δν(α,x, t)

= 0,

(5.11)

where the boundary terms from the integration by parts in the second term have vanished

due to the boundary condition for the adjoint variables ζ(α,x, tf ) = 0, and we have defined:

J [{ν},{ζ}](t) =
∞∑
n′=0

∑
α′

∫
dx′ ζᵀ(α′,x′, t)F [{ν}](α′,x′, t). (5.12)

We therefore obtain the adjoint system

dζ(α,x, t)
dt

= ∆µ(α,x, t)− δJ [{ν},{ζ}](t)
δν(α,x, t) . (5.13)

Depending on the form of the functional, additional boundary conditions may be enforced

to evaluate the term on the right. Equations (5.9,5.13) can be equivalently expressed by

the Hamiltonian system

dν(α,x, t)
dt

= δH[{ν},{ζ}](t)
δζ(α,x, t) ,

dζ(α,x, t)
dt

=−δH[{ν},{ζ}](t)
δν(α,x, t) ,

(5.14)

where

H[{ν},{ζ}](t) =−DKL(p||p̃) +J [{ν},{ζ}](t). (5.15)

Given a reduced model for the dynamics (5.9), equation (5.11) gives the necessary
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condition for extremizing the action. In a typical model reduction setting, however, the

reduced model is not know beforehand. What should the form of the model (5.9) be

extremize the action? Consider the case where the functional is specified in terms of some

ordinary functions. We next set up a variational problem for these functions appearing

on the right hand side of the differential equation. Variational problems of this form have

been studied previously: first in the context of optimal control theory [54, 55], and later

didactically in [56].

Let the functional be of the form:

d

dt
νk(α〈i〉nk ,x〈i〉nk , t) = Fk[{ν},{Fk}](α,x, t), (5.16)

where the Mk ordinary functions appearing on the right hand side are F (s)
k ({ν(α,x, t)}) for

s= 1, . . . ,Mk, denoted by {Fk}= {F (s)
k }

Mk
s=1. For arbitrary perturbations δF (s)

k , extremizing

the action gives

δS =−
∫ tf

t0
dt
∞∑
n=0

∑
α

∫
dx

K∑
k=1

∑
〈i〉nk

Mk∑
s=1

δJ [{ν},{ζ}](t)
δF

(s)
k ({ν(α,x, t)})

δF
(s)
k ({ν(α,x, t)}) = 0. (5.17)

Equation (5.17) is the variational calculus form of the sensitivity equation obtained

by the adjoint method when the functional model is specified in terms of some parameter

vector [57]. This is particularly clear if we consider the specific form of (5.16) as the

autonomous ordinary differential equation (ODE) system:

d

dt
νk(α〈i〉nk ,x〈i〉nk , t) = Fk({ν(α〈i〉nk ,x〈i〉nk , t)}), (5.18)

where {ν(α〈i〉nk ,x〈i〉nk , t)} denotes all ν of all possible arguments appearing on the left hand
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side. In this case, (5.17) becomes

δS =−
∫ tf

t0
dt
∞∑
n=0

∑
α

∫
dx ζᵀ(α,x, t)δF ({ν(α,x, t)}) = 0, (5.19)

where as before we have used vectors of length N to denote possible (k,〈i〉nk) as before.

This resembles the adjoint method sensitivity equation, where variational terms δFk and

δS replace ordinary derivatives with respect to parameters. This will be pursued further in

Section 6.1.1. The result of (5.19) is that extremizing the action requires that the adjoint

variables vanish everywhere ζk(α〈i〉nk ,x〈i〉nk , t) = 0. One case when this is satisfied is if the

adjoint system is source free ∆µk(α〈i〉nk ,x〈i〉nk , t) = 0, i.e. the moment matching condition is

enforced.

From the Euler-Lagrange equations (5.13), the adjoint variables obey:

dζ(α,x, t)
dt

= ∆µ(α,x, t)−Gᵀ(α,x, t)ζ(α,x, t), (5.20)

where the elements of the N ×N matrix G are

Gi,i′(α,x, t) =
∂Fk({ν(α〈i〉nk ,x〈i〉nk , t)})
∂νk′(α〈i〉nk′ ,x〈i〉nk′ , t)

, (5.21)

where (k,〈i〉nk) corresponds to index i and (k′,〈i〉nk′) corresponds to index i′. Appendix C.1

gives the formal solution to (5.20) and makes explicit the connection between the conditions

for extrema (5.19) and (5.7).

5.1.3 Sampling spatial Boltzmann distributions

It remains to discuss how to sample moments from a spatial Boltzmann distribution

like p̃(n,x) (without loss of generality, we drop the species label in this discussion). This

type of distribution is challenging to sample - not only are there n random variables x, but
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the number of unknowns n is also unknown. Because of this, popular sampling techniques

in ML such as Gibbs sampling cannot be used. Instead, a special Markov chain Monte

Carlo (MCMC) method called reversible jump MCMC (RJMCMC) [58] can be employed.

Metropolis Hastings algorithm

To start, we review the Metropolis Hastings algorithm. This does not allow for

jumps in the dimension n, but sets up the RJMCMC method. For a fixed n, the algorithm

proceeds as follows:

1. Starting at a given state (n,x(t)) at iteration t, draw a new proposal state n,x∗ from

the proposal (jumping) distribution Jt(n,x∗|n,x(t)).

2. Compute acceptance ratio:

r = p̃(n,x∗)
p̃(n,x(t))

× Jt(n,x
(t)|n,x∗)

Jt(n,x∗|n,x(t))

= exp
[
−
(
E(n,x∗, t)−E(n,x(t), t)

)]
× Jt(n,x

(t)|n,x∗)
Jt(n,x∗|n,x(t))

.

(5.22)

3. Accept the new state (n,x(t+1)) = (n,x∗) with probability min(r,1).

Reversible jump MCMC

Sampling distributions where “we don’t know the number of things we don’t

know" [58] is possible using reversible jump MCMC (RJMCMC). Here, the number of

things we don’t know is n(t), the number of particles, i.e. the number of random variables,

which we now allow to vary. In this case, RJMCMC generalizes the Metropolis-Hastings

algorithm as follows:

1. Start at a given state (n(t),x(t)). Let the probability for moving to a new space of

dimension n∗ be q(n∗|n(t)).
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2. Generate a random vector u of length nu according to: qnu(u). Note: no restriction

is made on the length of u.

3. Construct the new proposal state (x∗,u∗) from (x(t),u) using the one-to-one function

(x∗,u∗) = gn∗|n(t)(x(t),u). Here x∗ is of length n∗, and u∗ is of length n∗u, which

satisfy:

n(t) +nu = n∗+n∗u. (5.23)

Here, u∗ are the random variable indexes and displacements needed to go backward

according to: (x(t),u) = g∗
n(t)|n∗(x

∗,u∗) (also one-to-one).

• gn∗|n(t) maps Rn(t)×Rnu →Rn∗×Rn∗u.

• g∗
n(t)|n∗ maps Rn∗×Rn∗u →Rn(t)×Rnu.

4. Form the Jacobian matrix J with components:

J ij = ∂(x∗,u∗)i
∂(x(t),u)j

. (5.24)

5. Calculate the acceptance probability

r = p̃(n∗,x∗)
p̃(n(t),x(t))

×
q(n(t)|n∗)q∗n∗u(u∗)
q(n∗|n(t))qnu(u)

×|det(J)|. (5.25)

6. Accept the new state (n(t+1),x(t+1)) = (n∗,x∗) with probability min(r,1).

The missing piece in RJMCMC is the choice for the proposal distribution q to

jump between spaces of different dimensions. This is best chosen specific to the system

considered. Since this work studies reaction-diffusion systems, a natural choice is to use a

reaction system to generate proposals.
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Proposal distribution through annihilation and synthesis reactions

One proposal distribution for the RJMCMC sampler are annihilation and synthesis

reactions.

1. Starting from (n(t),x(t)), the annihilation reaction moves to a new space of dimension

n∗ = n(t)−1, while the synthesis reaction moves to n∗ = n(t) + 1. Let synthesis be

chosen with rate α and annihilation with rate 1−α, then choose which reaction

occurs from the candidate distribution:

q(n(t)−1|n(t)) =


1−α if n(t) 6= 0,

0 otherwise,

q(n(t) + 1|n(t)) =


α if n(t) 6= 0,

1 otherwise,

(5.26)

2. For the annihilation reaction, generate a discrete random variable u according to:

qann(u= i) = 1
n(t) where i= 0,1,n(t)−1. (5.27)

For the synthesis reaction, generate two discrete random variables (u1,u2) where u1 is

discrete in i= 0,1, . . . ,n(t) + 1 denoting which index the new particle will be inserted

at, and u2 is the point in continuous space at which the particle will be located:

qsyn(u1 = i,u2) = 1
n(t) + 1

. (5.28)

3. For the annihilation reaction, construct the new proposal state (x∗,u∗) of length
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n(t) + 1 from (x(t),u) of length n(t) + 1 using:

x∗ = x(t)\{x(t)
u } of length n(t)−1,

u∗ = (u,x(t)
u ) of length 2.

(5.29)

For the synthesis reaction, construct the new proposal state (x∗,u∗) of length n(t) +2

from (x(t),u1,u2) of length n(t) + 2 using:

x∗ = {x(t)
0 , . . . ,x

(t)
u1−1,u2,x

(t)
u1+1,x

(t)
n(t)−1} of length n(t) + 1,

u∗ = (u1) of length 1.
(5.30)

4. Form the Jacobian, which works out to |det(J)|= 1 for both annihilation and synthesis

reactions.

5. The acceptance probability is then: for the annihilation reaction:

r = p̃(n∗,x∗)
p̃(n(t),x(t))

× c, (5.31)

where for annihilation:

c=
q(n(t)|n(t)−1)q∗syn(u1,u2)
q(n(t)−1|n(t))qann(u)

= α(1/n(t))
(1−α)(1/n(t))

= α

1−α, (5.32)

and for the synthesis reaction for n(t) 6= 0:

c= q(n(t)|n(t) + 1)q∗ann(u)
q(n(t) + 1|n(t))qsyn(u1,u2)

= (1−α)(1/(n(t) + 1))
α(1/(n(t) + 1))

= (1−α)
α

, (5.33)
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and for the synthesis reaction for n(t) = 0:

c= (1−α)(1/(0 + 1))
(1)(1/(0 + 1)) = 1−α

2 . (5.34)

Since the ratio of Boltzmann distributions results in a difference of energies, then

the RJMCMC sampler is very efficient because only terms in the energy function involving

the particle being annihilated or synthesized contribute.

Sampling particle positions through diffusion

We can change the positions of the particles one at a time, keeping n fixed, using a

Gibbs sampler. The univariate conditional distributions are:

p(x(t)
j |n

(t),x(−j)(t), t) =
exp

[
−∑K

k=1
∑
〈i〉nk−1

νk

(
x

(t)
j ,x

(−j)(t)
〈i〉nk−1

, t
)]

∫
dy exp

[
−∑K

k=1
∑
〈i〉nk−1

νk

(
y,x

(−j)(t)
〈i〉nk−1

, t
)] , (5.35)

where x(−j) denotes the vector x without the j-th element. However, this requires

calculating the normalization factor in the denominator, which due to the integration can

be difficult/imprecise. A more robust strategy therefore is a similar Metropolis-Hastings

sampler.

To move a single particle at a time with a diffusion-like proposal state, construct a

new state as x∗i = x(t)\{x(t)
i }∪{x∗} for index i= 0, . . . ,n(t)−1 and new position x∗. The

proposal distribution is Gaussian:

Jt(n(t),x∗i |n(t),x(t)) =G(x(t)
i ,x

∗, ξ), (5.36)

and the ratio in the Metropolis-Hastings algorithm (5.22) is unity.
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Example

Consider a Gaussian in n particles with mean n0 distributed in space as a Gaussian

about the point x0 with variance σ2 in each direction:

p(n,x)∝ exp
−(n−n0)2

2ζ2

exp
− n∑

i=1

|xi−x0|2

2σ2

∝ exp
− n∑

i=1
ν1(xi)−

(
n

2

)
ν2

, (5.37)

where

ν1(xi) = 1/2−n0
ζ2 + |xi−x0|2

2σ2 ,

ν2 = 1
ζ2 .

(5.38)

Figure 5.1 shows the sampled number of particles from the RJMCMC sampler. The

parameters were n0 = 100, ζ2 = 2,x0 = 0,σ2 = 1, and the initial distribution contained 200

particles spread uniformly in a box of side length 10. The method converges rapidly over

500 sampling steps.

0 100 200 300 400 500
0

50

100

150

200

Step

No. particles

Sampled

Distribution mean

Figure 5.1: Left: No particles sampled from the distribution (5.37) using the RJMCMC
sampler over 500 steps. At each step, annihilation and synthesis are chosen with equal
probability α= 0.5, and 10 steps of diffusion are run. Middle, right: The initial uniform
distribution of 200 particles and final Gaussian distribution of 100 particles.
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5.2 PDE-constrained optimization in machine learn-

ing

In the previous section, an adjoint method learning problem was introduced for

spatial dynamic Boltzmann distributions. First order gradient methods are popular for

solving optimization problems in machine learning, but there are many more methods which

are popular in PDE-constrained optimization. Here, a short review and brief discussion

about solving PDE-constrained optimization problems in machine learning is presented.

Consider again the problem to extremize S given by (5.17) subject to the ODE

constraint (5.16). Ultimately, to solve such a problem on a computer, the ODE constraint

must be parameterized in terms of design or control variables r. The problem can be

written as:

min
ν,r

S(ν,r),

s.t. c(r,ν) = dν

dt
−F (ν,r) = 0,

ν(t= 0) = η,

(5.39)

where we use vector notation and drop arguments for convenience. The vector ν is referred

to as the state variables, and S the objective function. Note that the objective function

considered in this thesis has no explicit dependence on the controls S(ν,r) = S(ν), but we

keep the notation more general in this section.

Two approaches exist for solving (5.39):

1. The solution to the differential equation constraint can be used to define an implicit

function from control variables to state variables ν(r), which can be used to eliminate

the state constraints. This is often called black-box optimization (in the context of

PDE-constrained problems), or nested analysis and design (NAND) [59, 60].
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The reduced formulation of the optimization problem becomes:

min
r

S∗(r), (5.40)

where the reduced objective function is:

S∗(r) = S(r,ν(r)). (5.41)

The mapping ν(r) exists for all constraints that will be considered in this thesis.

More precisely, the implicit function theorem guarantees that the mapping ν(r) exists

if the matrix ∂c/∂ν is invertible (i.e. exists and is nonsingular) [59].

2. The constraint can be kept explicitly in the optimization problem, such that both ν

and r are optimized. The PDE-constraint is therefore generally not satisfied during

training; only at the final optimization step do we require (if the problem has been

solved) that the constraint is satisfied. This is often called all-at-once optimization,

or simultaneous analysis and design (SAND) [59, 60].

The second method is increasingly popular for PDE-constrained optimization prob-

lems because it does not necessarily require solving the PDE constraint at each optimization

step, which can be a computational bottleneck. However, the second method relies on using

powerful optimization methods to perform well, particularly second order methods [60].

However, in machine learning applications, there are other factors that limit the choice of

optimization method:

• Methods that require evaluating the objective function are typically avoided in

machine learning. A cornerstone idea is to estimate gradients from small batches,

leading to the popular stochastic gradient descent. Computing the objective function

over the entire dataset during training is computationally expensive, but using a
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small batch size is likely to be noisy. Further, computing the objective function for

the dynamic Boltzmann distribution requires the calculation of the normalization

constant. Methods such as annealed importance sampling (AIS) or Chib-inspired

estimators [61] can be used to estimate of the partition function, but these require a

large number of sampling steps, making them impractical to use during training.

• Line search methods are not common because they require evaluating the objective

function. This will have important implications for the treatment of state inequality

constraints as discussed later.

• Second order gradient methods require estimating higher order moments. For example,

in deep Boltzmann machines, the Hessian involves estimating three and four-spin

moments. Higher order moments require larger sample sizes to estimate reliably at

significant computational expense.

• Stochastic quasi-Newton methods, i.e. methods that combine stochastic optimization

with quasi-Newton methods that estimate the Hessian, are a forefront research

topic [62, 63] and discussed further in Chapter 5.4.1. Quasi-Newton methods usually

involve curvature pairs, i.e. differences in the gradient signal obtained over successive

optimization steps. In machine learning, even the true first order gradient is not

available - only a noisy approximation is possible over a small batch size. Since

differentiation amplifies noise, the approximation of the Hessian by small batch sizes

is highly inaccurate. One way to mitigate this is by using large batch sizes, but this

is difficult to balance with computation time [64]. Instead, methods like stochastic

Broyden–Fletcher–Goldfarb–Shanno (BFGS) update curvature pairs without changing

the batch across neighboring optimization steps to mitigate the noise. Despite this,

limitations remain as they require line searches for accurate estimates of the Hessian

(c.f. Wolfe conditions).
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Both first order methods and stochastic quasi-Newton methods are used in the next

sections.

5.3 Learning diffusion constant

To model a simple diffusion process in 3D from a point source of particles, let the

spatial dynamic Boltzmann distribution be of the form:

p̃(x, t) = exp
− n∑

i=1
ν1(xi, t)

. (5.42)

Note that to take the limit from a generally variable number of particles n to a fixed number

of particles, a thin Gaussian in n can be introduced in the interactions (Appendix C.3.1).

The diffusion operator acting on p̃ for an initial Gaussian distribution at t = t0

leads to the following differential equation for the interactions (derived in Appendix C.3.2),

where x is a point inside Ω with boundary Γ:

∂tν1(x,t) =D∇2ν1(x,t)−D
(
∇ν1(x,t)

)2 ,
ν1(x,t= t0) = (x−µ)2

4Dt0
+ 3

2 ln(4πDt0).
(5.43)

Additionally, the boundary conditions must be specified. Let these be Neumann conditions

for x on the boundary x ∈ Γ at all times t ∈ [t0, tf ]:

∇iν1(x,t) · n̂= g(x,t), (5.44)

for some specified g(x,t).

To derive the adjoint equation, introduce a Lagrange multiplier ξ(x,t) to enforce

the differential equation constraint for ν1(x,t), and similarly a Lagrange multiplier func-
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tion η(x,t) to enforce the boundary condition. The adjoint equations are derived in

Appendix C.3.4, giving for points x in the interior:

∂tξ(x,t) = ∆µ(x,t)−D∇2ξ(x,t)−2Dξ(x,t)∇2ν1(x,t)−2D∇ξ(x,t) ·∇ν1(x,t),

ξ(x,tf ) = 0,
(5.45)

and for points on the boundary x ∈ Γ:

−Dξ(x,t) +η(x,t) = 0,

∇ξ(x,t) · n̂+ 2ξ(x,t)g(x,t) = 0.
(5.46)

Note that since the Lagrange multiplier η only appears in the third equation, it can be

ignored in practice unless we are interested in determining its value.

To solve the diffusion equation numerically, for example using FEniCS [65], the

weak formulation of the forward and backward problems are required. Approximating time

derivatives using a backward Euler scheme:

ν
(n+1)
1 (x)−ν(n)

1 (x)
∆t =D∇2ν

(n+1)
1 (x)−D

(
∇ν(n+1)

1 (x)
)2
, (5.47)

gives the weak formulations for the forward problem as derived in Appendix C.3.3:

∫
Ω
dx ν

(n+1)
1 (x)v(x) + ∆tD

∫
Ω
dx∇ν(n+1)

1 (x) ·∇v(x)

+ ∆tD
∫

Ω
dx

(
∇ν(n+1)

1 (x)
)2
v(x)−

∫
Ω
dx ν

(n)
1 (x)v(x) = 0,

(5.48)

and for the backward problem as derived in Appendix C.3.5:

∫
dy

ξ(n)(y)
∆t v(y) +D

∫
dy ∇ξ(n)(y) ·∇v(y) + 2D

∫
dy ξ(n)(y)∇ν(n)

1 (y) ·∇v(y)

−
∫
dy

ξ(n+1)(y)
∆t v(y) +

∫
dy ∆µ(n)(y)v(y) = 0.

(5.49)
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Finally, the optimality condition is derived in Appendix C.3.6 and given by:

0 = dS

dD
=−

∫ tf

t0
dt
∫

Γ
dx g(x,t)ξ(x,t)

+
∫ tf

t0
dt
∫
dx

(
∇ν1(x,t) ·∇ξ(x,t) +

(
∇ν1(x,t)

)2 ξ(x,t)) . (5.50)

Figure 5.2 gives an example where the diffusion constant of a point source of particles

is learned from stochastic simulations in MCell [5]. The weak forms of the equations are

solved using FEniCS [65] on the mesh show in panel (b), where the boundary condition is

taken as the zero flux condition g(x,t) = 0 everywhere on the boundary at all times. The

learned diffusion constant matches the true diffusion constant of the stochastic simulations.

In general, this approach can be used to learn an effective diffusion constant that may arise

from particles diffusion in a confined environment, such as for ions in the post-synaptic

spine head.

Mesh used for ⌫1(x, t)
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(b) (c)

Figure 5.2: (a) Snapshots of stochastic simulations of a point source of particles
diffusion in a 3D sphere. Simulations are done using MCell [5] in continuous space.
Left: initial distribution. Right: final timepoint. (b) Mesh used for learning ν1(x,t). (c)
Learned diffusion constant converging to the true constant from stochastic simulations,
starting from an initial guess D = 250 as a function of the optimization step.
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5.4 Physics-based Gaussian graphical models

An important class of dynamic Boltzmann distribution models are Gaussian distri-

butions for well mixed systems, described by the number of particles n= {nA,nB, . . .} of

each species R= {A,B, . . .} of length M . The reduced model distribution is:

p̃(n;ν(t))∝ exp
−1

2

(
n+B−1ν1−

1
2B
−1diag(B)

)ᵀ
B

(
n+B−1ν1−

1
2B
−1diag(B)

),
(5.51)

where ν1 are bias terms for each species, and the precision matrix B has elements:

B =



ν2,R1,R1 ν2,R1,R2 . . . ν2,R1,RM

ν2,R1,R2 ν2,R2,R2 . . . ν2,R2,RM

. . .

ν2,R1,RM ν2,R2,RM . . . ν2,RM ,RM


. (5.52)

Here, the time dependence of parameters ν,B has been omitted. This uncommon form

of a Gaussian distribution makes clear the connection to graphical models - ν1 are single

species interaction terms, while ν2 are edges in graph, including self interactions. See also

Chapter 3.1. Missing edges correspond to zeros in the precision matrix.

To describe the time evolution of the dynamic Gaussian distribution, differential

equations are introduced for ν. The physics of reaction networks can be introduced into the

learning problem through the linearity proposition of the previous chapter. For a chosen

set of reactions, approximations for the time evolution of ν are derived under the MaxEnt

closure approximation. For example, for the reaction A+B→ C:

1. Derive from the CME the differential equations for the moments controlled by the
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interactions ν in the MaxEnt sense, i.e.

d

dt
〈nRi〉p for i= 1, . . . ,M,

d

dt

〈(
nRi
2

)〉
p

for i= 1, . . . ,M,

d

dt
〈nRinRj 〉p for i 6= j.

(5.53)

Here, missing terms in the precision matrix are not included, and p denotes that

these are the fine scale differential equations derived from the CME. The scaling

factor that appears in these equations from a reaction rate is omitted.

2. Close the system of differential equations by using MaxEnt closure (aka “zero infor-

mation" closure), i.e. by expressing all moments through the Boltzmann distribu-

tion (5.51):

〈. . .〉p→ 〈. . .〉p̃. (5.54)

3. Convert back to the parameter frame using the relations:

B = Σ−1,

ν1 =−Bµ+ 1
2diag(B).

(5.55)

If there are missing edges in the graphical model, i.e. if the precision matrix has

a certain structure with some zero elements, this conversion is more involved. Ap-

pendix C.4.1 derives the necessary equations for this conversion.

The result is a closed differential equation system for the parameters:

F̃
(A+B→ C)(ν(t)) =

(
dν

dt

)(A+B→ C)
, (5.56)

where we use F̃ to denote that this is an approximation under the MaxEnt closure
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approximation for this reaction. This approximation is a function of all generally

parameters ν in the model.

Since the linearity of the CME in reactions extends to this form of the approximations

(Chapter 4), then a linear model is a physically relevant choice for combining F̃ under

different reactions. Let the differential equations thus be of the form:

dν

dt
= F (ν(t);u) =

R∑
r=1

ur F̃
(r)(ν(t)), (5.57)

for reactions indexed by r = 1, . . . ,R. The coefficients u learned are directly the reaction

rates corresponding to different reactions. This type of model can be used for both system

identification, where the space of reactions introduced includes those of the stochastic

simulations, or for model reduction, where the reaction approximations chosen are a simpler

reaction network than that of the simulations.

In addition to the differential equation constraints, two additional inequality con-

straints are required. First, since the distribution describes particle counts, the mean of

the distribution µ should be non-negative. Second, while the initial distribution is assumed

to have a valid precision matrix B that is positive semidefinite, the learned differential

equations must keep the precision matrix positive semidefinite at all timepoints.

The full constrained optimization is:

min
u

S =
∫ T

0
dtDKL(p||p̃),

subject to ν̇(t) = F (ν(t);u) =
R∑
r=1

ur F̃
(r)(ν(t)),

ν(t= 0) = ν0,

µ(t)≥ 0,

B(t)� 0,

(5.58)
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where u are the parameters to be learned. The awake and asleep phase moments for the

Gaussian distribution that arise in the gradients in S are derived in Appendix C.4.2.

The optimization problem (5.58) now contains not only differential equation con-

straints, but also inequality constraints on the state variables (rather than directly on the

controls u). A key problem is that the inequality constraints must be satisfied during train-

ing, not just at the final iterate. Otherwise, the calculation of the reaction approximations

is numerically unstable because the distribution (5.51) is ill-formed. The optimization

method must therefore be a interior point method.

To deal with the inequality constraints, introduce the log barrier function:

Φ(x) =− ln(x). (5.59)

To deal with the positive semidefinite constraint, use the eigenvalue decomposition Σ =

QΛQᵀ where λ= diag(Λ) are the eigenvalues. The eigenvalues of the precision matrix are

simply their inverse λ−1, which are constrained to be positive at all times along with the

mean number of particles:

S→
∫ T

0
dtDKL(p||p̃) + ζµ

∫ T

0
dt Φ(µ) + ζλ

∫ T

0
dt Φ(λ−1), (5.60)

where ζ are hyperparameters to be tuned, and vector notation denotes Φ(µ) =∑M
i=1 Φ(µi).

Equation (5.60) requires evaluating the gradients of the log barrier with respect to

the state variables. For the eigenvalues in particular, this is given by:

∂Φ(λ−1
i )

∂ν∗
=−λ−1

i

∂λi
∂ν∗

=


0 if ν∗ = ν1α

(Q:,i ·eα)(Q:,i ·eβ) =Qα,iQβ,i if ν∗ = ν2αβ

(5.61)

where Q:,i is the eigenvector given by the i-th column of Q. In practice, placing a barrier
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on log10(λ−1) rather than λ−1 was found to be numerically more stable.

Since an interior point method is required, an addition Lagrange multiplier ξ is

introduced as the dual variable for each inequality constraint:

µiξµ,i = ζµ,

λiξλ,i = ζλ,

(5.62)

for i= 1, . . . ,M . The dual variables are updated in parallel to the control parameters in

the optimization problem. Further, the step sizes must be limited, i.e. if the update step is

of the form:

u→ u+α×∆u, (5.63)

where ∆u is the update resulting from some optimization method, then α ∈ [0,1] must

chosen such that ξ ≥ 0 to ensure that the new point is interior.

5.4.1 Stochastic L-BFGS

Some of the most powerful methods for solving differential equation constrained

optimization problems such as (5.58) are quasi-Newton methods. Newton’s method is

prohibitively expensive, as the second gradient in the KL-divergence involves high order

moments that require many samples to estimate. Instead, quasi-Newton methods such as

the Broyden–Fletcher–Goldfarb–Shanno (BFGS) algorithm or it’s limited memory variant

L-BFGS construct an approximation to the inverse Hessian. Let the term curvature pairs

at the n-th optimization step denote the pair:

sn−1 = un−un−1,

yn−1 =∇S(un)−∇S(un−1).
(5.64)
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Algorithm 3 Standard L-BFGS
1: Initialize
2: Given: batch size η, no. curvature pairs m to store
3: Initialize: u0, n= 0
4: while not converged do
5: Choose batch of data Rn of size η.
6: Calculate gradients ∇S(un) as in Algorithm 1 using Rn.
7: Update curvature pairs, retaining the last m pairs:
8: sn−1 = un−un−1
9: yn−1 =∇S(un)−∇S(un−1)

10: Calculate search direction pn from {s},{y} using standard L-BFGS two-loop
recursion [66].

11: Line search and update: un+1 = un+αpn.
12: n→ n+ 1.

In L-BFGS, the search direction is calculated [66] from the m most recent curvature pairs,

where m is usually chosen to be small m∼ 5. Algorithm 3 reviews the L-BFGS algorithm.

An important aspect is a line search that ensures that the Wolfe conditions are met - this

ensures that estimate of the inverse Hessian is positive definite.

The KL-divergence objective function has an unfortunate challenge for the L-BFGS

algorithm. One reason is that the gradients are noisy because they are estimated from

averaging over a small batch size. This noise is amplified by the curvature pairs (5.64)

because they essentially compute the derivative of the noisy gradients. Furthermore, not

only are the gradients noisy, but even the objective function cannot be easily estimated,

since it requires evaluating a partition function. This makes the line search in the L-BFGS

algorithm infeasible, but this is needed to ensure a positive definite inverse Hessian.

The solution to these problems is a stochastic L-BFGS algorithm [67], also sometimes

called an online L-BFGS algorithm. Let the batch used for the gradients at step n− 1

be Rn−1, and the gradients at n be estimated from the batch Rn. The main idea is to

estimate the curvature pairs (5.64) from the overlap On =Rn∩Rn−1 to reduce the noise

in the estimates.
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Algorithm 4 Stochastic (online) L-BFGS
1: Initialize
2: Given: batch size η, no. curvature pairs m to store
3: Initialize: u0, n= 0
4: while not converged do
5: Batch Rn of size η that overlaps with Rn−1: On =Rn∩Rn−1.
6: Calculate gradients ∇S(un) as in Algorithm 1 using Rn.
7: Update curvature pairs, retaining the last m pairs:
8: sn−1 = un−un−1
9: yn−1 =∇S(un)−∇S(un−1) from overlap On

10: Ensure that the new curvature pair satisfies sᵀn−1yn−1 > 0, else drop this curvature
pair.

11: Calculate search direction pn from {s},{y} using standard L-BFGS two-loop
recursion [66].

12: No line search: un+1 = un+pn.
13: n→ n+ 1.

A further regularization strategy is needed to ensure the estimate of the inverse

Hessian remains positive definite for the new curvature pairs. A simple strategy is to just

drop curvature pairs that do not satisfy sᵀn−1yn−1 > 0. However, if too many curvature

pairs are dropped, the estimate of the inverse Hessian can lag behind and give wrong

curvature information. A better strategy is to introduce a regularization parameter λ and

replace the curvature estimate (5.64) by yn−1 =∇S(un)−∇S(un−1) +λsn−1, where λ is

chosen at each optimization step to satisfy sᵀn−1yn−1 > 0. A similar strategy using Powell

damping is also possible [68].

Algorithm 4 summarizes the complete stochastic L-BFGS method.
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5.4.2 Lotka-Volterra

As an example problem, consider again the Lotka-Volterra system:

H→
kd

∅,

H+P →
ke

2H,

P →
kb

2P.

(5.65)

Stochastic simulations were run for this system using the Gillespie algorithm to generate

training data. The reaction rates in the simulations were kd = 0.2,ke = 0.00166, and kb = 1.0

(arbitrary units). The simulation time was 30 (arbitrary time units), with the population of

hunter and prey stored at intervals of 0.25 (arbitrary time units) resulting in 120 timepoints.

The initial distribution of particles was Gaussian with mean for hunter and prey {600,250}

and covariance matrix diag({25,25}), and simulations were run for 300 random seeds.

Figure 5.3 shows the learned coefficients in the differential equations (5.57) where

the reaction approximations used are those of the stochastic simulations (5.65). The

coefficients reproduce the true reaction rates as expected after ∼ 50 optimization steps,

with initial coefficients set to zero. Figure 5.4 shows the awake and asleep phase moments

learned, showing that the reduced model differential equations (5.57) under the closure

approximation accurately reproduce the observed moments.

5.4.3 Recovering unobserved species

In the previous section, all species R= {H,P} were observed from the stochastic

simulations. Instead, latent species may also be introduced. For example, consider again

the Lotka-Volterra system (5.65), but only observe the prey P , and introduce a latent

species X in the Gaussian distribution. The reaction approximations in the reduced model

107



Figure 5.3: Learned coefficients in the differential equation model (5.57) for the
Lotka-Volterra system (5.65). The reaction system used in the reduced model is that
of the stochastic simulations; the learned coefficients converge to the values from the
simulations. The rate for the hunter death reaction is scaled by a factor 10; the rate
for the predator-prey reaction is scaled by a factor 1000. Noise is due to the stochastic
L-BFGS algorithm used.

Figure 5.4: Moments learned after 1000 optimization steps for the Lotka-Volterra
system (5.65). The asleep phase moments reproduce the awake phase moments.

are now:

X →∅,

X+P → 2X,

P → 2P.

(5.66)
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Figure 5.5 shows the learned coefficients for this model, showing that the model can

rediscover X as a hunter species, with the correct rates from the stochastic simulations.

� ���� ����� ����� �����
���

���

���

���

���

���

���

������������ ����

� -> � �

� ���� ����� ����� �����
����

����

����

����

����

����

������������ ����

� -> �

� ���� ����� ����� �����
������

������

������

������

������

������������ ����

� + � -> � �

Learned rate

True rate

Figure 5.5: Learned coefficients in the differential equation model (5.57) for the Lotka-
Volterra system (5.65). The reaction system used in the reduced model is (5.66), where
the hunter population is not observed, but instead represented by a latent species X.
The model learns that X should play the role of a hunter species, and rediscovers the
rate constants from the stochastic simulations. The Adam optimizer [69] was used for
2×104 optimization steps, with learning rates 10−3 for the birth reaction coefficient,
10−4 for the death reaction, and 10−6 for the predator-prey reaction.

5.4.4 Competitive Lotka-Volterra

As a second example, the Lotka-Volterra system is learned again, but this time

using a competitive Lotka-Volterra system for the reaction approximations of the reduced
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model (5.57):

H→∅,

P →∅,

H+P → 2H,

P +H→ 2P,

H→ 2H,

P → 2P.

(5.67)

Each species can therefore be the hunter or prey. Figure 5.6 shows the learned coefficients

in this case. While the true reaction rates are not obtained, an equivalent reaction network

is learned for the system. An extra Lasso regularization term has been shown to help

identify the true system [44].

Figure 5.6: Learned coefficients in the differential equation model (5.57) for the Lotka-
Volterra system (5.65). The reaction system used in the reduced model is a competitive
Lotka-Volterra system (5.67) where each species can be hunter or prey. The rates for
the death reactions are scaled by a factor 10; the rates for the predator-prey reactions
are scaled by a factor 1000. Noise is due to the stochastic L-BFGS algorithm used.
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5.5 Discussion

We have presented a learning problem for spatiotemporal distributions that estimates

differential equation systems controlling a time-varying Boltzmann distribution. The ability

to enforce a reduced physical model to be estimated makes the method interesting for

many modeling applications, including chemical kinetics as presented here. Mapping to a

differential equation model can be likewise be useful for engineering applications, allowing

constraints to be efficiently introduced into BM learning as discussed in Section 6.1.1.

The moment closure approximation presented in Section 5.1 is broadly applicable due

to the use latent variables that can be trained to capture relevant higher order correlations,

rather than deciding a priori what correlations to include as in typical closure schemes.

Minimizing the KL divergence between the reduced and true models at all times is closely

related to entropic matching, but differs by the introduction of a differential equation

system. We also make the connection to spatially continuous reaction systems explicit.

A popular alternative class of generative models to RBMs are variational autoen-

coders (VAEs). An adaptation of the proposed method may be possible for these models -

however, the main advantages of the current RBM framework is that the form of the energy

function can be used interpret the reduced model [16], and that the distribution over the

latent variables is not chosen as in VAEs (typically a standard normal distribution), but

rather learned from data.

A closely related problem to model reduction is the problem of data assimilation,

where noisy measurements and an incomplete model for the dynamics are combined to

estimate the true state of the system and unknown parameters in the model [70]. Model

reduction methods complement the data assimilation problem by replacing the physical

model with a reduced one which can increase the efficiency of data assimilation methods.

We view the present work as progress toward linking models across scales in biol-

ogy [71]. Reaction-diffusion systems illustrate many of the common problems in this field.
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While much machinery (CME or field-theoretic methods) exists to formulate problems

for observables, their solution is non-trivial in most applications. Even without analytic

challenges such as moment closure, the numerical solution of PDE systems is difficult

for systems with high spatial organization, or where interactions with other scales (e.g.

molecular dynamics) or physics (e.g. electrodiffusion) become relevant. Learning reduced

models in the form of spatial dynamic Boltzmann distributions may abstract much of these

non-trivial interactions.
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Chapter 6

Deep learning moment closure

approximations

In this chapter, applications to reaction-diffusion systems on a lattice are explored.

These lattice models of reaction-diffusion systems are close to Boltzmann machines in their

formalism, and many interesting problems arise from the connection. Building to deep

dynamic Boltzmann distributions in particular is a challenge that is solved in this chapter

using the centering transformation [40, 41], a trick introduced in Chapter 3 to limit the

magnitude of signals passed between layers. The multiple layers learn the long range spatial

correlations which are relevant to the moment closure problem. It is further shown how

the differential equations can be parameterized using basis functions from finite elements.

This chapter is taken with modifications from Ref. [18].

6.1 Restricted Boltzmann machines

We next consider a specific case of the formalism of Section 5.1 where the system

is described by discrete random variables. A Boltzmann distribution on a state v =
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{v1, . . . ,vN} of N discrete random variables is of the form:

p̃(v) = 1
Z

exp
[
−E(v)

]
, (6.1)

where Z is the partition function, and the energy function E(v) is typically defined by

a chosen Markov random field (MRF). For example, a Boltzmann machine (BM) [13]

is a binary MRF, where binary units update their state based on a bias and pairwise

connections to other units. A MRF where all variables v are driven by data is fully visible;

otherwise units h which are not driven by data are denoted as hidden.

A restricted Boltzmann machine (RBM) [72] is a BM in which hidden and visible

units are organized into layers, where a layer is defined by the property that there are no

interactions among units in the same layer. For example, a typical energy function for an

RBM is of the form:

E(v,h,θ) =−
∑
i

bivi−
∑
j

b′jhj−
∑
{i,j}

Wi,jvihj , (6.2)

where the summation {i, j} is determined by the graph edges, and θ is the vector of length

K of all interaction parameters in the graph. This defines a joint distribution over v and h:

p̃(v,h;θ) = 1
Z(θ) exp

[
−E(v,h,θ)

]
. (6.3)

Each parameter θk in this MaxEnt distribution controls a corresponding moment µ̃k, given

by µ̃k = ∂ lnZ(θ)/∂θk.

Define a dynamic Boltzmann distribution as one with time-dependent interaction

parameters:

p̃(v,h;θ(t)) = 1
Z(θ(t)) exp

[
−E(v,h,θ(t))

]
. (6.4)
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For example, the energy function of the RBM becomes:

E(v,h,θ(t)) =−
∑
i

bi(t)vi−
∑
j

b′j(t)hj−
∑
{i,j}

Wi,j(t)vihj . (6.5)

This is a specific case of a spatial dynamic Boltzmann distribution (5.2) in the discrete

lattice limit. To see this, assign to every visible unit vi a spatial location xi. By taking self

interaction functions ν1(x,t) =∑
i bi(t)δx,xi in (5.2), we recover the first term in (6.5) with

vi ∈ {0,1}, where δx,xi is unity if the coordinates are coincident and zero otherwise.

Similarly, hidden units can also be represented in continuous space. Let the species

labels αv denote visible units and βh denote hidden units, and assign to every hidden unit

hj a spatial location yj . The weights between layers are then obtained by taking pairwise

interactions ν2(x,y,α,β, t) =∑
i,jWi,j(t)δx,xiδy,yjδα,αvδβ,βh in (5.2).

6.1.1 An adjoint method learning problem for restricted Boltz-

mann machines

Introduce for each interaction parameter θk, k = 1, . . . ,K, in the interaction graph a

time-evolution function Fk forming an autonomous ODE system (analogous to (5.18)):

d

dt
θk(t) = Fk(θ(t)), (6.6)

with initial condition θk(t0) = θk,0. To obtain from the variational problem derived in

Section 5.1.2 an ordinary optimization problem for parameters, further consider the para-

materization by the vectors uk of size Mk, generally unique for every k:

d

dt
θk(t) = Fk(θ(t);uk). (6.7)
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Algorithm 5 Stochastic Gradient Descent for Learning Restricted Boltzmann Machine
Dynamics
1: Initialize
2: Parameters uk controlling the functions Fk(θ;uk) for all k = 1, . . . ,K.
3: Time interval [t0, tf ], a formula for the learning rate λ.
4: while not converged do
5: Initialize ∆Fk,i = 0 for all k = 1, . . . ,K and parameters i= 1, . . . ,Mk.
6: for sample in batch do
7: . Generate trajectory in reduced space θ:
8: Solve the PDE constraint (6.7) for θk(t) with a given IC θk,0 over t0 ≤ t≤ tf ,

for all k.
9: . Awake phase:

10: Evaluate moments µk(t) of the data for all k, t.
11: . Asleep phase:
12: Evaluate moments µ̃k(t) of the Boltzmann distribution.
13: . Solve the adjoint system:
14: Solve the adjoint system (6.11) for φk(t) for all k,t.
15: . Evaluate the objective function:
16: Update ∆Fk,i as the cumulative moving average of the sensitivity equation (6.10)

over the batch.
17: . Update to decrease objective function:
18: uk,i→ uk,i−λ∆Fk,i for all k, i.

Analogously to the continuous case, define as the objective function the KL-

divergence between the true and reduced models, p and p̃, over all times (analogous

to (5.5)):

S =
∫ tf

t0
dtDKL(p||p̃),

DKL(p||p̃) =
∑
z
p(z) ln p(z)

p̃(z;{u}) .
(6.8)

where {u}= {uk}Kk=1. Minimizing S is thus equivalent to maximizing the log-likelihood of

the observed data given the parameters, i.e. L({u};z) = log p̃(z;{u}). A more common

approach is to instead maximize the conditional likelihood of observations conditioned on the

first observation: L({u};z2, z3, . . . |z1) = log p̃(z2, z3, . . . |z1;{u}), or similar causal relations.
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For Markov chains, this approach is highly successful (leading to e.g. Kalman filters;

see [73] for an introduction). If a prior is available, Bayesian methods that compute the

posterior p̃({u};z)∝ p̃(z;{u})× p̃({u}) can provide further improvements. The advantage

of the current approach is that a reduced physical model can be enforced through the

parameterization (6.7). This model can be based on prior information, such as reaction

networks with known solutions [16]. A second advantage is that the generalization to

spatially continuous systems follows naturally using PDEs as in (5.9).

The time integral in S can be lead to undesired extrema, for example for periodic

systems where the objective function may not minimize the KL-divergence pointwise. One

algorithmic strategy for eliminating these in practice is to shift the limits of integration

during the optimization, as further explored in Section 6.2.1.

Minimizing the objective function defines a PDE-constrained optimization problem:

minimize (6.8) subject to the PDE-constraint (6.7). Define the Lagrangian function

(analogous to (5.10)):

L(t;{u}) =DKL(p||p̃) +
K∑
k=1

φk(t)
(
d

dt
θk(t)−Fk(θ(t);uk)

)
, (6.9)

where we have introduced the adjoint variables φk associated with each θk. Taking the

derivative of the objective function S =
∫ tf
t0 dt L(t;{u}) with respect to a parameter gives

the sensitivity equation (analogous to (5.19)):

dS

duk,i
=−

∫ tf

t0
dt
∂Fk(θ(t);uk)

∂uk,i
φk(t), (6.10)

and taking the derivative with respect to θ gives the ODE system obeyed by the adjoint
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variables (analogous to (5.20)):

d

dt
φk(t) = µ̃k(t)−µk(t)−

K∑
l=1

∂Fl(θ(t);ul)
∂θk(t)

φl(t), (6.11)

where µk(t′) and µ̃k(t′) are averages taken over to p and p̃ at time t′, and the boundary

condition is φk(tf ) = 0.

Algorithm 5 outlines how this optimization problem can be solved in practice. The

inner loop of an “awake" and “asleep" phase of sampling are identical to that of BM learning.

Standard algorithmic improvements are possible, such as the use of accelerated gradient

descent methods such as Adam [74], and using persistent contrastive divergence (PCD)

method [36] to estimate the moments of the reduced model µ̃k(t′).

Adjoint methods such as these for solving PDE-constrained optimization problems

are also called “black-box" methods [75, 76], since the PDE constraint (6.7) is eliminated in

the derivation of the sensitivity equation (6.10). A competing class of methods (sometimes

referred to as “all-at-once" methods) treat the constraint explicitly in the optimization,

and may offer a computational advantage over this approach. These include sequential

quadratic programming (SQP) and augmented Lagrangian methods.

Additional constraints or regularization terms can be included in the optimization,

such as conserved quantities identified from the left null space of the net stoichiometry

matrix. For example, L2 regularization can be incorporated into the objective function:

S =
∫ tf

t0
dtDKL(p||p̃) +λr

∫ tf

t0
dt

K∑
k=1

(
θk(t)− θk(t)

)2
, (6.12)

where θk(t) are some specified functions or otherwise constant, and λr is a regularization
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parameter. In this case, the adjoint variables are given by:

d

dt
φk(t) = µ̃k(t)−µk(t) + 2λr

(
θk(t)− θk(t)

)
−

K∑
l=1

∂Fl(θ(t);ul)
∂θk(t)

φl(t). (6.13)

6.1.2 Finite element parameterization

What choice should be made for the parameterization (6.7) of the right hand sides

of the differential equations? In [16], we considered simple reaction-diffusion systems

from which general forms of approximate models could be inferred that maintain physical

interpretations. A second approach also explored in [16] is to use a separate moment closure

approximation to derive analytic solutions for simple reaction systems on 1D lattices, where

the inverse Ising problem is analytically solvable. The form of (6.7) can then be taken as

either linear or non-linear combinations of known solutions.

Here, we take a finite element method (FEM) [77] approach to the parameterization

that is more aligned with the unsupervised learning problem in a Boltzmann machine. The

space of solutions to the general variational problem (5.17), which is some Banach space, is

therefore restricted to the space of finite element method solutions.

An important restriction is that the learning rule (6.10) requires C1 finite elements.

One choice for such elements is the Q3 family of finite elements [78], which in dimensions

higher than one are easily constructed as tensor products of 1D cubic polynomials1. For C1

elements that control the value of the function and its derivative at the endpoints, these

polynomials are just the Hermite polynomials, shown in Figure 6.1(d).

We therefore introduce for each time-evolution function in (6.7) a domain of hypercu-

bic cells, with 4d degrees of freedom, where d are the number of arguments to Fk. In practice,

we found it is rarely necessary to have more than d= 3 arguments (see Section 4.5). For

d= 3, each cube has 64 degrees of freedom (8 degrees of freedom at each vertex, specifying
1An alternative choice for tetrahedral meshes is the P3 family of finite elements.
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the function value and derivatives). For a cubic lattice of V = L1×L2×L3 cells, there are

8V degrees of freedom total, with the parameterization taking the usual form in terms of

the basis functions fl associated with each degree of freedom:

Fk(θ1, θ2, θ3;uk) =
8V∑
l=1

ulfl(θ1, θ2, θ3). (6.14)

Note that here, the right hand side of the differential equation is parameterized (as opposed

to the solution of the differential equation), since the objective of the learning algorithm is

to determine a suitable differential equation model.

6.2 Reaction-diffusion systems on lattices

Recall that the state of a reaction-diffusion system at some time is described by

n particles of species α located at positions x in generally continuous 3D space. To

make an explicit connection to binary random variables, we consider a simpler model of

particles hopping on a discrete lattice in the single-occupancy limit. To generate stochastic

simulations of such a system, we adapt the method of Ref. [52] for a lattice-based variant

of the popular Gillespie stochastic simulation algorithm (SSA) [14] as follows: at each

timestep:

1. Perform unimolecular reactions following the standard Gillespie SSA.

2. Iterate over all particles in random order; for each:

(a) Hop to a neighboring site, chosen at random with equal probability.

(b) If the site is unoccupied, the move is accepted. If the site is occupied, a

bimolecular reaction occurs with some probability; else, the move is rejected

and the particle is returned to the original site.

The lattice on which particles hop is designated as the visible part of the MRF.

Assign a unique index i to each of the N sites in the lattice, and let the vector of possible
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species be s of size M in some arbitrary ordering (excluding ∅ to denote an empty site).

Spins at a site i are now multinomial units, represented as a vector vi of length M where

entries vi,α ∈ {0,1} for α = 1, . . . ,M denote the absence or presence of a particle of species

sα (an n-vector model in statistical mechanics). The single-occupancy limit corresponds to

the implicit constraint that the vectors are of unit length, i.e. ∑M
α=0 vi,α = 1, where α = 0

denotes an empty site. The matrix V of size N ×M describes the state of the visible part

of the MRF, where each row denotes a lattice site.

Likewise introduce hidden layer species s′ of size M ′, which may be different from

s. Indexing all hidden sites as j = 1, . . . ,N ′, hidden unit vectors are hj of length M ′. The

state of the hidden units is H of size N ′×M ′, with the single occupancy constraint as

before.

The dynamic Boltzmann distribution becomes:

p̃(V ,H|θ(t)) = exp
[
−E(V ,H ,θ(t))

]
/Z(θ(t)), (6.15)

where interaction parameters θ(t) may also be species-dependent (excluding ∅). For

example, the energy function for the RBM becomes:

E(V ,H ,θ(t)) =−
N∑
i=1

M∑
α=1

bi,α(t)vi,α−
N ′∑
j=1

M ′∑
β=1

b′j,β(t)hj,β−
∑
{i,j}

∑
α,β

Wi,j,α,β(t)vi,αhj,β.

(6.16)

6.2.1 Learning hidden layers for moment closure

A typical problem in many-body systems is the appearance of a hierarchy of moments,

where the time-evolution of a given moment depends on higher order moments. Moment

closure approximations terminate this infinite hierarchy at some finite order. In this section,

we develop the perspective of the learning problem (6.10) as a closure approximation using
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a simple pedagogical example. We note some similarity to previously proposed closure

schemes [25, 10], as well as to entropic matching [79], although the current approach differs

in the objective function (6.8) and the formulation for spatially continuous systems in

Section 5.1.

Consider a bimolecular-annihilation process on a 1D lattice of length N , where

particles of a single species A hop and react according to A+A→∅. The time-evolution

of the first two moments can be derived from the CME (see example in Appendix C.2) as:

d

dt

〈∑
i

vi

〉
=−2kr

〈∑
i

vivi+1

〉
,

d

dt

〈∑
i

vivi+1

〉
=2D

〈∑
i

vivi+2

〉
−2kr

〈∑
i

vivi+1vi+2

〉
+ (kr−2D)

〈∑
i

vivi+1

〉
,

(6.17)

where kr is the reaction rate and D the diffusion rate. The simplest graph to capture

such observables is a fully visible Markov random field, i.e. a 1D Ising model including

interactions up to some order. For example, including third order interactions, let:

E(v, b(t),J(t),K(t)) =−b(t)
N∑
i=1

vi−J(t)
N−1∑
i=1

vivi+1−K(t)
N−2∑
i=1

vivi+1vi+2, (6.18)

and let:

ḃ=Fb(b,J,K;ub),

J̇ =FJ(b,J,K;uJ),

K̇ =FK(b,J,K;uK),

(6.19)

for some parameter vectors u to be learned, where time derivatives are denoted as ẋ= d/dt.

The corresponding graphical model is illustrated in Figure 6.1(b). The choice of the energy

function in (6.18) defines which moments are explicitly captured by the reduced model. The

additional choice of the form of the differential equations Fγ defines the moment closure
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approximation made.

We next show through computational experiments that the introduction of hidden

layers can improve upon a fully visible closure model:

1. In any closure scheme, moments beyond a certain order are not captured explicitly

by the model, so that their approximation may be poor. The representation power of

hidden layers [80] can be used to incorporate information about which higher order

moments are relevant to the dataset.

2. Two distinct states having the same lower order moments are indistinguishable in the

reduced model (the model is not sufficiently high dimensional). Hidden layers may

be able to separate such states if their connectivity is suitably chosen to represent

relevant higher order correlations, even if the model remains low order.

3. The number of higher-order terms appearing on the right of (6.17) grows with the

order on the left. This problem is compounded if species labels are included. Hidden

layers and a restriction on the number of species M ′ allowed to occupy hidden units

may be used to approximate such higher order interactions with fewer parameters.

It is generally difficult to choose the optimal close approximation, i.e. to know which

moments are relevant to the time-evolution of a given dataset. A key advantage of the

present approach is that the connectivity of the hidden layers may be chosen based on the

differential equations derived from the chemical master equation. For example, consider to

the bimolecular annihilation system (6.17): if the goal is to accurately model the mean

number of particles, then the right hand side of (6.17) shows that the nearest-neighbor

moment is relevant to the time evolution. The graphical model of the reduced system

could therefore introduce a hidden unit for every pair of neighboring lattice sites, with

corresponding energy function:

E(v,h, b(t),W (t), b′(t)) =−b(t)
N∑
i=1

vi− b′(t)
N−1∑
j=1

hj−W (t)
N∑
i=1

∑
j=i−1,i

vihj , (6.20)
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Figure 6.1: Comparison of a fully visible and a latent variable model for capturing local
correlations in a 1D lattice. (a) 1D lattice with one hidden layer (similar to an RBM).
Note that in this simplified example, W is a single translation invariant parameter
rather than a matrix as common in RBMs. (b) Fully visible model for a 1D lattice
including nearest neighbor (NN) interactions J and next-nearest neighbors (NNN) K.
(c) An example state of the hidden layer model, where blue color indicates the presence
of a particle in the visible layer, and likewise red for the hidden layer. By learning the
parameters, the hidden layer can be tuned to capture the presence of NNs. (d) The
basis functions of the Q3 family of C1 finite elements in 1D (Hermite polynomials), used
to parameterize the right-hand sides of (6.19,6.21). Basis functions in higher dimensions
are constructed as tensor products of the 1D polynomials. (e) Moments of stochastic
simulations for 10 of the 50 initial conditions used for training (each trajectory obtained
from averaging over 50 lattices simulated from the same initial condition).

and differential equation model:

ḃ=Fb(b,b′,W ;ub),

ḃ′ =Fb′(b,b′,W ;ub′),

Ẇ =FW (b,b′,W ;uW ).

(6.21)

The corresponding graphical model is shown in Figure 6.1(a,c).

The time-evolution functions for (6.19) and (6.21) are learned using Algorithm 1

and compared in Figure 6.2. For the visible model, cells of size 0.5×0.5×0.5 in (b,J,K)

are used, and for the hidden layer model cells of size 0.5×0.5×0.05 in (b,W,b′), as shown

in Figure 6.2.
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Figure 6.2: Top row: Learned time-evolution functions for the fully visible model (6.19),
using the Q3, C1 finite element parameterization (6.14) with cells of size 0.5×0.5×0.5
in (b,J,K). Left panel: Training set of initial points (b,J,K) (cyan) sampled evenly in
[−1,1]. Stochastic simulations for each initial point are used as training data (learned
trajectories shown in black, endpoints in magenta). Middle three panels: the time
evolution functions learned, where the heat map indicates the value of Fγ in (6.19). Right
panel: vertices of the finite element cells used. Bottom row: Hidden layer model (6.21)
and parameterization (6.14) with cells of size 0.5×0.5×0.05 in (b,W,b′). Initial points
are generated by BM learning applied to the points of the visible model. Note that the
coefficients corresponding to the other seven degrees of freedom at each vertex are also
learned (not shown), i.e. the first derivatives in each parameter.

As training data, 50 points (b,J,K) are sampled evenly over (b,J,K)∈ [−1,1]3. Each

point corresponds to an initial distribution (6.18), from each of which 50 lattices of length

N = 1000 are sampled (top left panel of Fig 6.2). The corresponding initial conditions in

(b,W,b′) space are learned separately using the BM learning algorithm (bottom left panel

of Fig 6.2). Each lattice is simulated for 200 timesteps of size ∆t= 0.01 with pr = 0.01, as

shown in Figure 6.1(e). These trajectories are pooled for Algorithm 1. Note that a single

set of parameter vectors {u} in (6.19,6.21) is learned, i.e. the parameter vectors are shared

among trajectories from all initial conditions.

For the fully visible model, asleep phase moments are estimated by running a Gibbs

sampler for a single step. Similarly, for the hidden model, awake and asleep phase moments
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Figure 6.3: (a) Nearest neighbor moment
〈∑

i vivi+1
〉
of the two models. The more

compact representation learned by the hidden layer model (left) captures low range
spatial correlations, while the fully visible model (right) shows no apparent organization.
(b) The parameters W and b′ for the hidden layer model for the 50 initial conditions
(b is monotonically decreasing for all trajectories). The learned parameters encode
the spatial correlation 2〈vivi+1〉 shown on the right. This shows the moment closure
approximation learned by the reduced model (see text). (c) RMSE in the third order
moment 〈

∑
i vivi+1vi+2〉 and fourth order moment 〈

∑
i vivi+1vi+2vi+3〉, calculated from

a set of test trajectories (not shown). Both models reproduce the observables with
reasonable accuracy, however, the error in the hidden layer model is lower due to the
more compact representation learned.

are estimated by a single step of contrastive divergence, i.e. CD-1. The parameters to

Algorithm 1 are learning rate λ= 1 for 200 optimization steps for both models.

The time integral in the action (6.8) can lead to undesired extrema, e.g. for periodic

trajectories. We use an on-line algorithmic solution is to shift the limits of integration

in (6.10) as new data is available:

dS

duk,i
=
∫ τ+∆τ

τ
dt
∂Fk(θ(t);uk)

∂uk,i
φk(t), (6.22)
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where ∆τ is fixed, and τ is gradually incremented t0 ≤ τ ≤ tf −∆τ . In this case, the

PDE constraint (6.7) is solved from t0 to τ , decreasing the size of the trajectories early

in the training. Further, the adjoint system (6.11) only has to be solved backwards from

φ(τ +∆τ) = 0 to φ(τ), which also controls the magnitude of the update steps as the length

of the trajectory grows, allowing a constant learning rate to be used. For the annihilation

system, we found that fixing ∆τ = 5 timesteps and shifting τ → τ + 1 every 2 optimization

steps gave fast convergence.

Figure 6.2 shows the learned time-evolution functions and trajectories of the training

data. For the visible model, these show an expected symmetric structure. As particles

diffuse and nearest-neighbor (NN) and next-nearest-neighbor (NNN) moments decay, FJ

and FK force J,K → 0 everywhere, while the bias term tends to negative infinity. The

representation learned by the hidden layer model is more compact. Figure 6.3(a) shows

the nearest neighbor moment 〈∑i vivi+1〉 overlaid onto the initial conditions, showing an

almost monotonic organization from low to high values by which the model can distinguish

these states (no organization is apparent in the visible model). Figure 6.3(b) shows the

learned parameter trajectories: b monotonically decreases (not shown), W asymptotically

approaches a negative value, and b′ either increases monotonically or initially decreases

before increasing again. This division corresponds to the decay of spatial correlations

2〈vivi+1〉 − 1 (such that 1 corresponds to a fully correlated lattice, and −1 to a fully

anti-correlated lattice), also shown in Figure 6.3(b). The two types of trajectories of b′

have a clear correspondence to two types of trajectories in the correlation function, and

the separation is visible in Fb′ in the negative and positive regimes. We conclude that the

moment closure approximation learned by the model therefore captures relevant low range

spatial correlations to approximate the right hand sides of the moment equations (6.17)

identified from the CME.

To assess the accuracy of the reduced models, we generate a test set of points
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(b,J,K) and the learn the corresponding points (b,W,b′) as before. These are evolved

in time using the learned DE systems (6.19,6.21). Define ε(t) =
√
〈(µ(t)− µ̃(t))2〉 as the

root mean square error (RMSE) between some moments of the reduced model µ̃ and

the stochastic simulations µ, where the moments are approximated by averaging over

50 samples. Figure 6.3(c) shows the RMSE for the third order moment 〈∑i vivi+1vi+2〉

and fourth order moment 〈∑i vivi+1vi+2vi+3〉. Both models have relatively low error in

reproducing the observables, however, the error in the hidden layer model is lower than in

the visible model. This is because the representation learned by the hidden layer model is

more compact, in that states initially distributed uniformly in (b,J,K) space are mapped

to an approximately 1D curve in (b,W,b′) space. Yet higher accuracies may be possible by

further tailoring that parameterizations of the differential equations from the cubic finite

elements used here.

6.2.2 Learning the Rössler oscillator

The Williamowski-Rössler oscillator system [81] is a chemical version of a spiral

oscillator in three species. The original formulation requires additional species that are fixed

at constant concentration. We follow recent work [82] on a volume-excluding version where

these constraints are incorporated into pseudo-first order reaction rates. The oscillator for

the species A,B,C is dictated by the reaction system:

A
k1−⇀↽−
p1

2A A+B
p2−→ 2B A+C

p3−→∅

B
k2−→∅ C

k3−⇀↽−
p4

2C
(6.23)

where the unimolecular reaction rates used are k1 = 30,k2 = 10,k3 = 16.5 (arbitrary units),

and the probabilities for bimolecular reactions are p1 = 0.1,p2 = 0.4,p3 = 0.24,p4 = 0.36.

We simulate this system on a 3D lattice of size 10×10×10 sites in the single occupancy
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Figure 6.4: Rössler oscillator on a 3D lattice. (a) Snapshots of a stochastic simulation
on a 10×10×10 lattice (A,B,C in pink, orange, cyan). (b) Moments from a single
simulation over 500 timesteps, producing a stochastic version of the characteristic
attractor of the well-known deterministic model. (c) Nearest neighbor moments in the
simulation of (b) show similar structure. (d) Relaxation to a stationary distribution,
indicated by the convergence of the means from averaging over 300 stochastic simulations.

limit as before. Figure 6.4 shows snapshots of such a stochastic simulation. Panel (b) in

particular shows the characteristic shape of the Rössler oscillator, with further structures

evident in higher order moments shown in (c). A snapshot of the spatial waves that occur

during transitions between A,B and C-dominated regimes is shown in panel (a).

The time evolution of the mean number of particles in A,B,C, denoted by µα, is

related to the number of nearest neighbors, denoted by ∆αβ, as follows:

d

dt
µA = k1µA−κ1∆AA−κ2∆AB−κ3∆AC ,

d

dt
µB = κ2∆AB−k2µB,

d

dt
µC =−κ3∆AC +k3µC −κ4∆CC ,

(6.24)
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Figure 6.5: (a) Graph to learn for the Rössler oscillator. The lattice on the left
corresponds to the visible layer, equivalent to the 10×10×10 cube in Figure 6.4; the
right corresponds to the hidden layer. Gray units in the hidden layer denote those units
which implement periodic boundary conditions to the visible layer. (b) Connectivity
of hidden layer. Each cube of 8 neighboring units in the visible layer (green circles) is
connected to a single unit (blue triangle) in the hidden layer (connections shown in red),
resembling a body-centred cubic structure. Biases for the units are not shown.

where κ1,κ2,κ3,κ4 are the reaction rates for the bimolecular reactions specified by probabil-

ities p1,p2,p3,p4 above. As previously, this system is not closed, such that two close initial

states in Figure 6.4(b) will diverge over their long term time-evolution. The challenge for

the latent variables in the reduced differential equation model is to incorporate relevant

higher order correlations to separate states which are close in their lower order moments.

As in Section 6.2.1, let the visible part of the graph be the lattice of Figure 6.4(a).

For the hidden layer, we choose a connectivity that coarse-grains the visible lattice by

one unit in each spatial dimension as shown in Figure 6.5. Note that the hidden layer is

also of size 10×10×10 units that implement periodic boundary conditions. The visible

layer of the graph is multinomial in one of {A,B,C,∅}, and similarly the hidden layer in

{X,Y,Z,∅}. The corresponding energy model is:

E(V ,H ,θ(t)) =−
∑
i

∑
α∈{A,B,C}

bαvi,α−
∑
j

∑
α∈{X,Y,Z}

bαhj,α

−
∑
{i,j}

(
WAXvi,Ahj,X +WBY vi,Bhj,Y +WCZvi,Chj,Z

)
,

(6.25)

where H refers to the hidden layer, and the sum over {i, j} implements the connectivity
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Figure 6.6: (a) The first 100 timesteps of the mean number of A,B,C in the Rössler
oscillator system. (b) Interaction parameters for a MaxEnt model constrained on
the moments in (a) given by equation (6.27). (c) The learned trajectory of (6.25) in
(bA, bB, bC)-space, with initial condition (− ln(2),− ln(2),− ln(2)). The bias parameters
have been tuned to control both the means and spatial correlations, together with the
weights (not shown). Gray scale value indicates bC component for clarity, scaled from
dark (min(bC)) to light (max(bC)). Initial point is shown in cyan, and endpoint in
magenta. (d) Vertices of the finite element cells of side length 0.1 used to parameterize
the differential equations (6.26).

shown in Figure 6.5, and

γ̇ = Fγ(bA, bB, bC ;uγ), (6.26)

for γ ∈{bA, bB, bC ,WAX ,WBY ,WCZ , bX , bY , bZ}. The right hand side of the differential equa-

tion is parameterized (6.14) by cubic C1 finite elements as before. To reduce the complexity

of the model, we have purposefully omitted interactionsWAY ,WAZ ,WBX ,WBZ ,WCX ,WCY .

With this choice, the latent species X coarse grains the visible species A, and similarly

for Y,B and C,Z. Note that all differential equation models share the same domain in

(bA, bB, bC) space. Note that while the biases hA,hB,hC are the Lagrange multipliers corre-
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Figure 6.7: Learned time-evolution functions (6.26) in (bA, bB, bC)-space (see Fig-
ure 6.6(d) for the vertices used), and the resulting trajectory in black (see Figure 6.6(c)).

sponding to the constraints for the number of particles of each species, through the energy

function (6.25) both the biases and weights together also control all spatial correlations of

the model.

Stochastic simulations are generated from an initial state with bA = bB = bC =− ln(2),

WAX = WBY = WCZ = WXY = WY Z = 0, and bX = bY = bZ =− ln
(
1/7

)
. By setting the

initial weights to zero, this is the MaxEnt state given that the number of particles is

µA = µB = µC = 200, since with zero weight:

µα = 1000× ebα

1 +∑
β=A,B,C e

bβ
for α ∈ {A,B,C}, (6.27)

where the factor 1000 results from summing over all visible sites. With zero weight, the

choice for the initial hidden layer bias is free - by choosing to set it to − ln
(
1/7

)
, we

are setting the target sparsity to approximately half of that of the visible layer with
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Figure 6.8: (a) Example of correlations learned by the reduced model compared
to stochastic simulations, obtained by sampling over 100 samples. Top row: mean
number of A,B,C particles. Bottom: neighboring pairs of (B,B),(C,C), and (A,B).
Short range spatial correlations relevant to the moment equations (6.24) are reasonably
approximated due to the chosen connectivity. (a) Sampled state V from the learned
model (top left), and the activated hidden layer probabilities p̃(H|V ) at timepoint 20.
After training, the hidden layers coarse grain nearest neighbors in the visible layer.

approximately 100 particles of each species as given by (6.27). Simulations are run for

500 timesteps of size ∆t= 0.01. Figure 6.4(d) shows the relaxation of the distribution to

equilibrium [83].

For training, we use Algorithm 1 with learning rate λ = 0.05 for the weights and

λ= 0.8 for the biases for 10000 optimization steps. To estimate the awake phase moments,

we sample p̃(H = 1|V ) for each sample in a batch size of η = 5, where V is a data vector.

To estimate the asleep phase moments, we alternate between sampling p̃(H(r) = 1|V (r))

and p̃(V (r) = 1|H(r−1)) for r = 1, . . . ,10 steps, starting from a random configuration V (0).

Alternatively, we also found fast convergence using k = 10 steps of contrastive divergence

(CD), as well as using persistent CD. To reduce the noise in the estimates, we use as

is common raw probabilities instead of multinomial states for the hidden units when

estimating both the awake and asleep phase moments.

As before, we use the online variant (6.22) of Algorithm 1 where the limits of
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integration are shifted during training, with window size ∆τ = 10, and τ is gradually

incremented τ → τ + 1 every 100 optimization steps. To learn smooth trajectories and

avoid jumps in the learned differential equation model, each timestep is divided into 10

substeps when solving the differential equations (6.25,6.26).

Figure 6.7 shows the learned time evolution functions for the Rössler oscillator over

the first 100 timesteps. The side length of the cubic finite elements used was 0.1 on all

sides, centered at the initial condition, as shown in Figure 6.6(d). We compare the learned

trajectories to a simplified MaxEnt model in Figure 6.6(a)-(c). Panel (a) shows the mean

number of particles over the first 100 timesteps, as in Figure 6.4(d). Panel (b) transforms

these points to the parameters (bA, bB, bC) of a simple MaxEnt model constrained on these

lowest order moments as given by (6.27). Panel (c) shows the learned model (6.26), where

the biases now control both the means and spatial correlations together with the weights.

The trajectory no longer resembles a periodic trajectory, having learned to separate close

states in panel (b).

The agreement between the stochastic simulations and reconstructed observables

is shown in Figure 6.8(a). At each timepoint, 100 samples are drawn from the reduced

model by running 25 steps of CD sampling, starting from a random configuration. Nearest

neighbors, which determine the time evolution of the means in (6.24) are reasonably

approximated, primarily due to the connectivity chosen in Figure 6.5.

Figure 6.8(b) shows a sampled state V from the learned model, and the activated

hidden layer probabilities p̃(H|V ) at timepoint 20. With the learned parameters, the

hidden units coarse grain nearest neighbors in the lattice, as needed to approximate the

right hand side of (6.24). A deeper network such as a deep Boltzmann machine (DBM) may

approximate yet higher spatial correlations, and can therefore be used to close differential

equation systems depending on higher order moments.
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6.3 Notation for multiple hidden layers

In this section, the notation for multiple hidden layers is introduced. Let the

lattice on which particles diffuse be the designated as the visible layer of the DBM. Let

there be a total of L layers, where l = 0 denotes the visible layer and l = 1, . . . ,L−1 the

hidden layers, each with N (l) units. Let the units in the l-th layer be one of M (l) species

R(l) = {A,B,C, . . .}. The state of each layer is described by N (l)×M (l) a matrix, where

entries si,α ∈ {0,1} denote the absence or presence of species α ∈R(l) at site i= 1, . . . ,N (l).

We consider lattices in the single-occupancy limit, corresponding to the implicit constraint∑
α∈R(l) s

(l)
i,α ∈ {0,1}.

A general energy model for fully connected layers [17] has biases a(l)
i,α for unit i in

layer l occupied by species α, and weights W (l,l+1)
i,α,j,β connecting unit i of species α in layer l

with unit j of species β in layer l+ 1. In this chapter, we focus on learning hierarchical

statistics with a smaller parameter space by making the following simplifications:

1. We consider locally connected layers instead of fully connected, where each unit in

layer l is connected to q(l,l+1) units in layer l+ 1.

2. Biases and weights are shared across units in a layer: a(l)
i,α→ a

(l)
α and W

(l,l+1)
i,α,j,β →

W
(l,l+1)
αβ .

Note that biases and weights remain species dependent. The energy function is:

E({S(l)}) =−
L−1∑
l=0

∑
α∈R(l)

a(l)
α

N (l)∑
i=1

s
(l)
α,i−

L−2∑
l=0

∑
α∈R(l)

∑
β∈R(l+1)

W
(l,l+1)
αβ

∑
〈ij〉

s
(l)
α,is

(l+1)
β,j , (6.28)

where 〈ij〉 sums over the local connectivity between two layers. Since each site i in layer l

is connected to q(l,l+1) sites in layer l+ 1, then this sum comprises N (l)× q(l,l+1) terms in

total.
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6.3.1 Learning rule for DBMs

Maximizing the log likelihood of observed data gives the well known learning rule

for DBMs [31]:

∆W (l,l+1)
αβ =

∑
〈ij〉

∆E
[
s

(l)
i,αs

(l+1)
j,β

]
& ∆a(l)

α =
N (l)∑
i=1

∆E
[
s

(l)
i,α

]
, (6.29)

where ∆E [X] = 〈X〉(m)−〈X〉(d), and 〈X〉(m) denotes an average taken over the model

distribution, and 〈X〉(d) denotes an average taken over the data distribution, and the

sign convention in the update steps is: a(l)
α → a

(l)
α −λ∆a(l)

α and similarly for W (l,l+1)
αβ , with

learning rate λ.

Estimating the moments can be done using the well-known wake-sleep algorithm [13].

The moments under the model distribution (sleep phase) are given by Gibbs sampling:

p̃(s(l)
i,α = 1|{S(m6=l)}) = exp

[
φ

(l)
i,α

]/(
1 +

∑
ζ∈R(l)

exp
[
φ

(l)
i,ζ

])
,

φ
(l)
i,α = a(l)

α +
∑

∆l=±1

∑
β∈R(l+∆l)

W
(l+∆l)
αβ

∑
j∼i

s
(l+∆l)
β,j ,

(6.30)

where ∑j∼i sums over units j connected to unit i. Each step of sampling is performed in

two phases: one pass for layers with even indexes, and one pass for layers with odd indexes.

Estimating the moments under the data distribution (keeping the visible layer clamped at

a data vector, i.e. the wake phase) can been done for DBMs by mean field methods [31], or

else by Gibbs sampling [40].
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6.3.2 Centering transformation and the centered gradient

A centered DBM [41, 40] with parameters ã(l)
α ,W

(l,l+1)
αβ has the energy function:

E({S(l)}) =−
L−1∑
l=0

∑
α∈R(l)

ã(l)
α

N (l)∑
i=1

(
s

(l)
α,i−µ

(l)
α

)

−
L−2∑
l=0

∑
α∈R(l)

∑
β∈R(l+1)

W̃
(l,l+1)
αβ

∑
〈ij〉

(
s

(l)
α,i−µ

(l)
α

)(
s

(l+1)
β,j −µ

(l+1)
β

)
,

(6.31)

where µ
(l)
α are the species-dependent centers in layer l. Every regular DBM can be

transformed to a centered DBM by transforming parameters as:

W̃
(l,l+1)
αβ =W

(l,l+1)
αβ & ã(l)

α = a(l)
α +

∑
∆l=±1

q(l,l+∆l) ∑
β∈R(l+∆l)

W
(l,l+∆l)
αβ µ

(l+∆l)
β . (6.32)

This can be used to derive the centered gradient [41]: After sampling the moments of a

regular DBM (6.30), transform to a centered DBM, calculate the gradient with respect to

the centered parameters, and transform back to obtain the gradient for the regular DBM

parameters. The result is

∆W (l,l+1)
αβ =

∑
〈ij〉

∆E
[
(s(l)
i,α−µ

(l)
α )(s(l+1)

j,β −µ(l+1)
β )

]
,

∆a(l)
α =

N (l)∑
i=1

∆E
[
s

(l)
i,α

]
−

∑
∆l=±1

q(l,l+∆l) ∑
β∈R(l+∆l)

∆W (l,l+∆l)
αβ µ

(l+∆l)
β ,

(6.33)

as derived in Appendix D.2. To reduce noise, the centers are updated as the average unit’s

state with an exponential sliding average with sliding parameter r ∈ [0,1]:

µ(l)
α ← (1− r)µ(l)

α + r× 1
N (l)

N (l)∑
i=1

〈
s

(l)
i,α

〉(d)
. (6.34)
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6.4 Dynamic centered DBMs

Following the DBD framework, escalate to time-varying interactions a(l)
α (t) and

W
(l,l+1)
αβ (t) in the energy function. To describe the time-evolving interactions, introduce

the autonomous differential equation system:

d

dt
a(l)
α (t) = F (l)

aα (θ(t);u(l)
aα),

d

dt
W

(l,l+1)
αβ (t) = F

(l,l+1)
Wαβ

(θ(t);u(l,l+1)
Wαβ

),
(6.35)

for given initial conditions a(l)
α (t = 0), W (l,l+1)

αβ (t = 0). Here θ(t) is a chosen domain of

interaction parameters (weights and biases), and F are functions with free parameter

vectors u to be learned.

The functions F on the right side can be chosen based on the physics of the

system under consideration to learn a reduced physical model. For reaction-diffusion

systems, the forms of F can be derived from the CME when using a fully visible Boltzmann

distributions [16]. A more blackbox aligned approach is to introduce basis functions fm(θ(t))

to parameterize (6.35). Following [17] we use the Q3 family of finite elements [78], which

has the advantage that in dimensions higher than one, basis functions are simply tensor

products of 1D cubic polynomials P3⊗P3⊗ . . . . The learning algorithm in Section 6.4.2

requires C1 functions - these polynomials are therefore the Hermite polynomials that in 1D

control four degrees of freedom: the value and the first derivative at each endpoint. For θ

of length d, this gives 4d degrees of freedom in total and corresponding coefficients u to be

learned:

F (l)
aα (θ(t);u(l)

aα) =
4d∑
m=1

u(l)
aα,m×fm(θ(t)) (6.36)

and similarly for W (l,l+1)
αβ , where fm is the appropriate basis function.
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6.4.1 The moment closure approximation for dynamic centered

DBMs

The key advantage of the dynamic Boltzmann distribution setting is the moment

closure approximation that can be learned from data. The time evolution of how any given

moment 〈X〉(m) evolves is derived in Appendix D.3. The result is:

d〈X〉(m)

dt
=
L−1∑
l=0

∑
α∈R(l)

F (l)
aα (θ(t);u(l)

aα)×
N (l)∑
i=1

Cov
(
X,s

(l)
i,α

)

+
L−2∑
l=0

∑
α∈R(l)

∑
β∈R(l+1)

F
(l,l+1)
Wαβ

(θ(t);u(l,l+1)
Wαβ

)×
∑
〈ij〉

Cov
(
X,s

(l)
i,αs

(l+1)
j,β

)
,

(6.37)

where Cov(X,Y ) = 〈XY 〉(m)−〈X〉(m) 〈Y 〉(m). The learned differential equation Fζ of every

interaction ζ (weights and biases) contributes to the closure model, weighted by a covariance

term between X and the observable for which ζ is the Lagrange multiplier. Equation (6.37)

should be directly compared against (6.43). Higher order terms of visible units appearing

in (6.43) are exchanged for correlations with latent random variables, whose activations

are learned.

6.4.2 Adjoint method learning problem with centering transfor-

mation

We next formulate a learning problem for the parameters u defining the dynamical

system (6.35). This is a specific case of a variational problem for the functions appearing on

the right hand side of a differential equation [17, 56], as shown in Appendix D.1. To enforce

the constraints (6.35), introduce adjoint variables φ(l)
α ,Λ(l,l+1)

αβ to the centered parameters

ã
(l)
α , W̃

(l,l+1)
αβ . The adjoint equations is derived from the Hamiltonian in Appendix D.4. The
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result is:

d

dt
φ(l)
α =

N (l)∑
i=1

∆E
[
s

(l)
i,α

]
−ψ

a
(l)
α
,

d

dt
Λ(l,l+1)
αβ =

∑
〈ij〉

∆E
[
(s(l)
i,α−µ

(l)
α )(s(l+1)

j,β −µ(l+1)
β )

]
−ψ

W
(l,l+1)
αβ

+ q(l,l+1)

µ(l)
α ψa(l+1)

β

+µ
(l+1)
β ψ

a
(l)
α
−φ(l+1)

β

dµ
(l)
α

dt
−φ(l)

α

dµ
(l+1)
β

dt

 ,
(6.38)

with boundary conditions φ(l)
α (t= τ + ∆τ) = Λ(l,l+1)

αβ (t= τ + ∆τ) = 0, and where

ψθ =
L−2∑
m=0

∑
ζ∈R(m)

∑
η∈R(m+1)

Λ(m,m+1)
ζη

∂F
(m,m+1)
Wζη

∂θ
+
L−1∑
m=0

∑
ζ∈R(m)

φ
(m)
ζ ×

∂F (m)
aζ

∂θ
+

∑
∆m=±1

q(m,m+∆m) ∑
η∈R(m+∆m)

∂F
(m,m+∆m)
Wζη

∂θ
µ(m+∆m)
η

.
(6.39)

While analytic expression for dµ(l)
α /dt are not available, in practice they can be easily

estimated as: dµ(l)
α (t)/dt≈ (µ(l)

α (t+ ∆t)−µ(l)
α (t))/∆t.

The sensitivity (update) equations for the parameters u to be learned are derived

in Appendix D.4. The result is:

dS

du
(l)
aα

=−
∫ τ+∆τ

τ
dt φ(l)

α
∂F

(l)
aα

∂u
(l)
aα

,

dS

du
(l,l+1)
Wαβ

=−
∫ τ+∆τ

τ
dt
(

Λ(l,l+1)
αβ + q(l,l+1)φ(l)

α µ
(l+1)
β + q(l,l+1)φ

(l+1)
β µ(l)

α

) ∂F (l,l+1)
Wαβ

∂u
(l,l+1)
Wαβ

,

(6.40)

where the update step is: u→ u−λ× (dS/du) with learning rate λ.

Algorithm 6 is an example of how the learning problem can be solved in practice.

Alternative approaches for solving PDE-constrained optimization problems can be applied,

such as sequential quadratic programming (SQP). A benefit of the current algorithm is its
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simplicity - the inner loop at each timestep is equivalent to the wake/sleep phases of the

Boltzmann machine learning algorithm [13]. A lower bound on the log-probability of test

data can therefore be obtained using established methods such as Annealed Importance

Sampling (AIS) [31]. It is naturally possible to use accelerated gradient descent methods

such as Adam [69].

Algorithm 6 Learning algorithm for dynamic centered DBMs
1: Input: Initial conditions for all interactions parameters, time interval [0,T ], a formula

for the learning rate λ, sliding factor r, batch size η, time window size ∆τ , a formula

for sliding τ .

2: Initialize: τ = 0, µ(0)
α to the data means, otherwise µ(l)

α = 1/(M (l) + 1).

3: while not converged do

4: for timepoint t in [τ,τ + ∆τ ] with timestep ∆t do

5: . Solve the constraints (6.35) for the current timepoint t from the previous

timepoint t−∆t.

6: . Estimate wake & sleep phase moments (6.38) over the batch (e.g. Gibbs

sampling).

7: . Update the centers µ(l)
α (t) according to (6.34).

8: . Calculate & store derivative terms ∂F/∂θ in (6.38) and ∂F/∂u in (6.40).

9: . Solve the adjoint system (6.38) backwards in time from t= τ + ∆τ to t= τ .

10: . Update the parameters u(l)
aα and u(l,l+1)

Wαβ
according to (6.40) with learning rate λ.

11: . Slide the time window at τ forward if necessary to eventually cover [0,T ].

6.5 Numerical example for the Lotka-Volterra system

We demonstrate Algorithm 6 for learning a moment closure approximation for a

Lotka-Volterra system using stochastic simulations as training data. Note that we only
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consider a single initial condition in this work - however, it is possible to learn a larger

parameter space from stochastic simulations with varying initial conditions [17].

For completeness, we briefly review the appearance of a hierarchy of moments in a

spatial probabilistic system. Consider the Lotka-Volterra predator-prey system, described

by the reactions:

∅ k1−→ P, H
k2−→∅, H+P

k3−→H+H, (6.41)

where H and P denote the predator (hunter) and prey populations and k1,k2,k3 are

reaction rates.

In a well mixed system where spatial effects are not included, the mean number of

H and P , denoted by µH and µP , obey the following ordinary differential equation (ODE)

system:

dµP (t)
dt

= k1µP (t)−k3µH(t)µP (t) & dµH(t)
dt

= k3µH(t)µP (t)−k2µH(t). (6.42)

These differential equations are solvable for given initial conditions µP (t= 0) and µH(t= 0).

In a spatial setting, consider a lattice in the single occupancy limit, where si,α ∈ {0,1}

describes the i-th lattice site occupied by species α ∈ {H,P}. The mean number of H and

Figure 6.9: Left: Mean number of hunter and prey in the Lotka-Volterra system
starting from 100 particles of each population (see text). Right: Two lattices at an
intersection point in the moment space of the left panel (red circle). Each have close
to the average number of particles (550 prey in black and 140 hunters in blue), but
different spatial correlations lead to differing time derivatives (6.43).
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P obey:

d

dt

〈∑
i

si,P

〉
= k1

〈∑
i

si,P

〉
−k3

〈∑
〈ij〉

si,Hsj,P

〉
,

d

dt

〈∑
i

si,H

〉
= k3

〈∑
〈ij〉

si,Hsj,P

〉
−k2

〈∑
i

si,H

〉
,

(6.43)

where ∑i sums over lattice sites, and ∑〈ij〉 over neighboring sites. These equations do not

close - a nearest neighbor moment appears on the right hand side. Further, the differential

equation describing this term depends on yet higher order ones, e.g. next-nearest neighbors,

or three particle correlations (if particles are allowed to diffuse, the diffusion constant would

appear here). Moment closure methods seek to obtain tractable approximations to this

infinite hierarchy of differential equations.

Alternative to the deterministic approach of solving differential equations such

as (6.42), stochastic approaches can be used. For example, the Gillespie stochastic simulation

algorithm (SSA) can be derived from the CME [14, 24]. Spatial adaptations of the

Gillespie SSA can similarly be used to generate stochastic simulations of (6.43), including in

continuous space [6]. Here we adopt a simple lattice based algorithm [17] in which particles

hop on a grid, undergo unimolecular reactions following the Gillespie SSA, and bimolecular

reactions with some chosen probability upon encounters.

To simulate the Lotka-Volterra system, we use a 2D lattice of 40×40 sites with

von Neumann connectivity and periodic boundary conditions. For reaction rates, we use

k1 = 0.025,k3 = 0.06, and bimolecular reaction probability 0.4 corresponding to k2. The

initial state has 100 particles of hunter and prey randomly distributed, and simulations are

run for 500 timesteps with ∆t= 1. Figure 6.9 shows snapshots of these simulations, which

feature spatial patterns including waves.

We generate 100 simulations as training data used in the rest of this chapter. The

mean number of hunter and prey is shown in Figure 6.9. Self intersections in this low order
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Figure 6.10: (a) Locally connected DBM in 3 layers with 40×40 units each (5×5
illustrated). Every 2×2 patch of units in layer l (blue) is connected to a single unit
in layer l+ 1 with two species-dependent weights W (l,l+1)

HH and W
(l,l+1)
PP . Gray units

implement periodic boundary conditions to the layer below. (b) Interactions learned
for the Lotka-Volterra system using Algorithm 6 (see text). (c) Spatial patterns in the
layers of (a) at timepoint 370 after training, obtained by 100 steps of Gibbs sampling
from a random configuration (raw probabilities shown for prey in black, hunter in blue).

moment space reflect the dependence on spatial correlations which differ over time. The

challenge for a deep learning problem is to identify relevant higher order correlations to

separate states identical in low order moments, and to learn a closure model for expressing

these correlations in terms of a finite number of parameters.

For the architecture of the DBM, we use a locally connected DBM with one visible

and two hidden layers as shown in Figure 6.10(a). Each 2×2 patch in layer l is connected

to a single unit in layer l+ 1. The number of units in each layer is held constant at

40×40, with boundary units implementing periodic boundary conditions to the layer below,

reflecting those used in the stochastic simulations.

Many systems feature a large number of species, e.g. states of ion channels as

different sub-units are activated. Having M (l) species in layer l and M (l+1) species in layer

l+ 1 leads to M (l)×M (l+1) species dependent weights. To limit this parameter inflation,

we consider two species H,P in each layer, and weights W (0,1)
HH ,W

(0,1)
PP and W (1,2)

HH ,W
(1,2)
PP .

We found the omitted cross-species weights to be less important, as a similar effect is

produced by crowding in the hidden layers during sampling.

As initial condition, we use the maximum entropy distribution consistent with the 100
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initial hunter and prey particles. This corresponds to initial parameters a(0)
H = a

(0)
P =−2.63,

and all other weights and biases set to zero. The algorithm therefore must learn to activate

latent variables to control spatial correlations. Starting from zero weights and biases allows

the hidden layers to enforce either a strengthening or suppressing (positive or negative

weights) relationship with neighboring layers. We restrict the domain of the differential

equations (6.35) to be θ = (a(0)
H ,a

(0)
P ,W

(0,1)
HH ,W

(0,1)
PP ,W

(1,2)
HH ,W

(1,2)
PP ). Since the distribution

starts with only the visible biases as non-zero, it is important to include these in the

domain. When training on stochastic simulations from many initial conditions, using

fewer parameters in the domain improves generalization [17]. The side length of the cubic

cell (6.36) used in all dimensions was 0.1.

Algorithm 6 is implemented as a C++ library freely available online [84]. We use

simple batch gradient descent with batch size η = 5, learning rate λ = 2.5×10−6 for all

parameters for 1000 optimization steps, and sliding factor r = 0.5 (the center is averaged

over all units allowing a larger factor than in non-dynamic centered DBMs). We use 10

steps of Gibbs sampling for estimating both the wake and sleep phase moments, with

persistent chains in the sleep phase [36]. The differential equations (6.35,6.38) are solved

using Euler’s method with the step size from the stochastic simulations. The time window

in (6.40) is of size ∆τ = 10 timesteps, and we slide τ → τ + 1 every two optimization steps.

Figure 6.10(b) shows the learned parameter trajectories. An example of the hidden layer

states is shown in Figure 6.10(c), showing the learned hierarchical representation of spatial

patterns in the hidden layers.

The moment closure approximation (6.37) is of particular interest. Here it can

be analyzed which weighted covariance terms the system has learned that contribute to

the time evolution of an observable. Consider for example the mean number of prey

〈X〉(m) =∑N (0)
i=1

〈
s

(0)
i,α

〉(m)
. Figure 6.11, top-left, shows the time evolution of this observable

under the trained model obtained by averaging over 100 sampled lattices (10 steps of Gibbs
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sampling from a random configuration) using the learned parameters at each timestep.

For testing, we compare the trajectory against stochastic simulations, which agree well

(for training on varying initial conditions, a test data set of stochastic simulations may be

used [17]). Next, we calculate each term in (6.37), shown in rows two and three (to reduce

noise, we first smooth the interactions with a low-pass filter with cutoff 0.1 before sampling

and calculating these terms). The sign of weight and bias terms is generally opposite - this

reflects the selective activation of units based on the 2×2 patches in neighboring layers,

rather than broad, spatially uncorrelated activations. To validate the accuracy of these

terms, we also plot their sum in the bottom row, which is nearly identical to the true time

derivative d〈X〉(d) /dt calculated from the stochastic simulations.

The two oscillation cycles in Figure 6.9 evolve differently due to the dependence

on higher order moments. How is this difference reflected in the learned moment closure

approximation? In the first oscillation in Figure 6.11, the time evolution is primarily

driven by the weight term W
(0,1)
PP from the first hidden layer, indicating that mainly nearest

neighbor structure relevant. In the second oscillation, the contribution from terms in the

second hidden layer has grown significantly, indicating longer range correlations are relevant.

Indeed, visually inspecting samples of the stochastic simulations (see Figure 6.9) shows

that larger domains of hunter and prey are formed in the second oscillation.

Examining different quantities 〈X〉(m) in this fashion gives insight into the learned

moment closure approximation. In the center column of Figure 6.11, we examine the mean

number of nearest neighbors of prey. The terms in (6.37) are approximately scaled version

of the terms for the mean number of prey. This is expected, since the reaction system

does not explicitly give a source or sink for nearest neighbor correlations between prey.

Not all terms are accurately captured. For example, the right column shows the mean

number of next-nearest neighbors (Manhattan distance two) of hunter and prey, which

are overestimated in the learned model. This is explained by weight terms from hunter
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and prey both contributing positively to the time evolution, rather than competitively as

previously.

6.6 Discussion

This chapter introduced a method for learning moment closure approximations from

data using multiple hidden layers. The finite element parameterization is similar to the

unsupervised learning setting of RBMs in the sense that it is independent of the system

under consideration. For deeper architectures such as DBMs as discussed in Section 6.2.2,

recycling the same time-evolution functions across multiple layers may be effective, similar

to convolution layers in convolutional neural networks. Factoring weights has also been

used effectively in deep learning [85], and may similarly reduce the computational burden

here.

A key result is the closure equation (6.37), which replaces long range spatial

correlations in the visible layer with correlations with latent variables, whose activation is

learned. The learning problem is that for a dynamic Boltzmann distribution, combined with

the architecture of a DBM. The centering transformation from centered DBMs is extended

to the adjoint system for the dynamic case, such that pre-training is unnecessary. The

hierarchical architecture in Figure 6.10(a) is tailored to reflect the moment equations derived

CME (6.43), naturally capturing correlations relevant to the moment closure problem. A

further important result is the use of multinomial variables in the hidden layers, which

allows interpretable learned representations as in Figure 6.10(c).

Further avenues for improvement exist. It may be possible to adapt the “serendipi-

tous" family of Q3 finite elements [78] to reduce the number of basis functions and therefore

computational cost [86], although it is not C1, requiring modifications to the learning

problem. For modeling applications, physically informed parameterizations are particu-
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larly interesting, e.g. for reaction-diffusion systems [17], and generally in mathematical

modeling [71].
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Figure 6.11: Columns: Quantities of interest 〈X〉(m). Top row: Comparison with
stochastic simulations. Second, third: Terms in the moment closure approximation (6.37).
Bottom: Derivative from summing the second & third rows as in (6.37) compared to
the derivative from stochastic simulations.
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Chapter 7

Physics-based machine learning for

modeling stochastic IP3-dependent

calcium dynamics

In the previous chapters, the DBD method for modeling reaction-diffusion systems

has been introduced and its learning problem studied for different applications. In this

chapter, we return to the main motivation of the method for physics-based machine learning.

It is shown how domain-specific knowledge can be introduced into the framework through

candidate functions. The ideas are demonstrated to model inositol 1,4,5-trisphosphate

(IP3) induced calcium oscillations that occur in non-excitable cells. The physics-based ML

method is shown to outperform an equivalent domain-agnostic method in generalization

performance, model size and interpretability of the learned representations.
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7.1 Introduction

Modeling physical systems with machine learning is a growing research topic. Ma-

chine learning offers inference methods that can be computationally more efficient than

first principles approaches, and that can generalize well from high dimensional datasets.

Their successes in science span protein structure prediction [87] to solutions to the quantum

many-body problem [37].

A key challenge is how to incorporate prior knowledge into the learning problem [88,

89, 90]. This includes physical laws, symmetries and conservation laws. For example,

kernel methods have been improved by encoding symmetries [91], and convolutional neural

networks (CNNs) have benefited from pose estimation [92]. However, it remains difficult to

introduce domain knowledge such as physical laws into machine learning. Often, methods

are used in a domain agnostic way [93, 94, 95, 96], in that physical processes are not

introduced explicitly, but rather only implicitly present in the training data. For some

applications this is an advantage [97, 98], but for scientific modeling it has at least three

deficits. First, models can be challenging to train, having to internally rediscover already

known function forms from large amounts of training data. Second, models can be difficult

to interpret, requiring a large number of parameters to explain behavior that from first

principles may be low dimensional. Third, the trained models may generalize poorly

compared to approaches incorporating physical principles.

This chapter introduces a method for modeling stochastic reaction networks that

incorporates knowledge from the chemical master equation (CME) into the inference

problem. This is made possible by representing the right hand side of a differential equation

by a neural network [10, 16, 17, 99, 100, 101]. By using analytically derived approximations

as inputs, the network is shown to improve generalization for a classic model of IP3

dependent calcium oscillations [102]. Additionally, reaction network conservation laws are

incorporated into the framework. From a subset of stochastic simulations, the trained model

151



completes the full range of oscillations, and outperforms an equivalent domain-agnostic

model. The proposed approach is one avenue to improve machine learning for scientific

modelling with domain-specific knowledge.

7.1.1 Chemical kinetics at the fine scale
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Figure 7.1: Architecture for the differential equation model (7.11), where the right
hand side is parameterized by a neural network. Inputs and outputs of the subnet are
also standardized.

Consider a system described by the number of particles n= {nA,nB, . . .} of species

{A,B, . . .}. The time evolution of the probability distribution over states p(n, t) is described

by the CME:
dp(n, t)
dt

=
R∑
r=1

∑
n′

[
Tr(n|n′)p(n′, t)−Tr(n′|n)p(n, t)

]
, (7.1)

where Tr(n|n′) is the propensity for the transition n′ to n under a reaction indexed by r.

Only the simplest reaction networks are solvable exactly or perturbatively in the

Doi-Peliti operator formalism [103]. Further, the differential equations for moments derived

from (7.1) generally do not close - equations for lower order moments depend on higher

orders. For example, for A+B→ 2B:

d〈nA〉
dt
∝−〈nAnB〉,

d〈nAnB〉
dt

∝−〈nAn2
B〉+ 〈n2

AnB〉−〈nAnB〉.
(7.2)
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This infinite hierarchy requires a moment closure approximation, such as the Gaussian

closure approximation:

p(n, t)∼N (n|µp(t),Σp(t)), (7.3)

where µp,Σp are the mean and covariance under p at an instant in time. In practice, it is

challenging to choose the optimal closure approximation, since it is not clear which higher

order moments will become relevant over long times.

Alternatively, the Gillespie algorithm [14] can be used to simulate stochastic trajec-

tories of reaction networks. This is popular in biology [6, 3], at the cost of computation

time for collecting sufficient statistics. Motivated by data-driven methods, we next propose

a framework to learn closure approximations from stochastic simulations.

7.2 Physics-based machine learning

7.2.1 Reduced model

We seek a reduced model that can be trained on stochastic simulations, but also

incorporates physical knowledge to improve generalization. This connection can be made by

a dynamic Boltzmann distribution (DBD) [16, 17, 18], consisting of an effective probability

distribution with time-dependent interactions θ(t) in the energy function:

p̃(n;θ(t)) = 1
Z(t) exp

[
−E(n;θ(t))

]
, (7.4)

and a differential equation system for the parameters:

dθ(t)
dt

= F (θ(t);u), (7.5)
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for some functions F with parameters u, with a given initial condition θ(t= 0) = θ0. The

Boltzmann distribution ansatz is motivated by the connection to graphical models [10]. In

this work, the reduced model (7.4) considered is that of probabilistic principal component

analysis (PCA), a popular choice for dimensionality reduction [26]. The parameters in the

energy function are:

θ(t) = {b,W,σ2,µh,Σh}(t), (7.6)

and the distribution is Gaussian:

p̃(n;θ(t)) =N (n|µ(t),C(t)),

µ(t) =

b+Wµh

µh

(t),

C(t) =

WW ᵀ+σ2I WΣh

ΣhW
ᵀ Σh

(t).

(7.7)

Splitting the species into visible nv of size Nv and hidden nh of size Nh gives the more

familiar form:

p̃(nh;θ(t)) =N (nh|µh,Σh),

p̃(nv|nh;θ(t)) =N (nv|b+W (µh+nh),σ2I).
(7.8)

7.2.2 Maximum likelihood at an instant in time

At an instant in time, µh and Σh are arbitrary; across time, the differential equa-

tion (7.5) depends on these variables. For µh = 0 and Σh = I, the maximum likelihood
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(ML) solution is:

ŴML(t) = Uq(t)(Lq(t)−σ2
ML(t)I)1/2R,

σ2
ML(t) = 1

Nv− q

Nv∑
i=q+1

λi(t),

b̂ML(t) = 1
M

M∑
i=1

Xi(t),

(7.9)

where M is the number of samples, X(t) is the data matrix of size M ×Nv, and Uq(t) and

Lq(t) are the normalized eigenvectors and eigenvalues of the data covariance matrix for the

1≤ q ≤Nv largest eigenvalues. R is a rotation matrix that can be taken as R = I. The

transformation to arbitrary µh,Σh is:

bML(t) = b̂ML(t)− ŴML(t)Σ−1/2
h (t)µh(t),

WML(t) = ŴML(t)Σ−1/2
h (t).

(7.10)

with matrix square root as (A1/2)ᵀA1/2 = A. For convenience, let θ̂(t) = {b̂, Ŵ ,σ2}(t)

denote the standard parameters.

7.2.3 Linking snapshots in time

Given a set of training data, the ML parameters θML(t) can be obtained at each

timepoint. To link snapshots in time, the form of the differential equations (7.5) must be

chosen. The known CME physics is used to guide this choice by deriving an approximation

F (approx.) to the true time evolution F as follows.

At any point in time, the distribution defined by θ(t) has observables φ(t) =

{µ,C}(t). For a single reaction like A+B→ 2B, these evolve as dφA+B→2B/dt according

to a hierarchy of moments like (7.2), derived from the CME. Under the Gaussian closure ap-

proximation (7.3), the equations for the moments are closed dφA+B→2B/dt∼ dφ
(closed)
A+B→2B/dt.
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To convert back to the parameter frame, only some observables are tracked exactly. While

arbitrary, the natural choice is d{µv,Cvh,Tr(Cv),µh,Σh}/dt which match the dimensions of

θ. The equations corresponding to this conversion dφ(closed)
A+B→2B/dt→ dθ

(closed)
A+B→2B/dt are ob-

tained by differentiating (7.7). The result F (approx.)
A+B→2B ≡ dθ

(closed)
A+B→2B/dt is an approximation

to the time evolution of θ(t) under this reaction (Appendix E.2.3).

By considering a variety of reaction processes in this manner, a set of candidates

was generated and used to parameterize the differential equations (7.5). It has been shown

that the linearity of the CME in reactions extends to this form of the reduced model [16].

However, a linear model for (7.5) generalizes poorly when the data is not well-represented

by a sparse set of available candidates [44].

Instead, let the right hand side of the differential equations (7.5) be given by a

neural network with a special architecture shown in Figure 7.1. At each point in time

with standard parameters θ̂(t), the inputs are the different reaction approximations. The

outputs are the derivatives:
dθ̂(t)
dt

= F̂ (θ̂(t);u), (7.11)

where the parameters u are those of the neural network. The model is trained to optimize

the L2 loss:

S =
T∑
t=1

dθ̂ML(t)
dt

− F̂ (θ̂ML(t);u)
2

. (7.12)

The training data is obtained from the ML parameters θ̂ML(t) for t = 1, . . . ,T by first

computing dθ̂ML(t)/dt using total variation regularization [104] to differentiate the noisy

signals. After training, the integration of (7.11) is stable if the Jacobian of the candidates

∂F̂
(approx.)
A+B→2B/∂θ̂ is small. To reduce the Jacobian, the data matrices X(t) are transformed

using a standardizing transformation (Appendix E.2.1).

In principle, the standard parameters θ̂ where µh = 0,Σh = I can be used to calculate

the reaction approximations. Instead, to improve generalization, the latent parameters
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µh,Σh are learned as a Fourier series. For a fixed set of L frequencies f , let Σh be diagonal

and let:

µh,i(t) = s(a(µ,i),b(µ,i)),

Σh,i,i(t) = 1 + ε+ s(a(Σ,i,i),b(Σ,i,i)),

s(a,b) =
∑L
l=1

(
al cos(flt) + bl sin(flt)

)
max

(∑L
l=1(|al|+ |bl|),1

)
+ ε

,

(7.13)

where ε is small and coefficients a,b are learned. This lets µh oscillate in [−1,1] and Σh

around the identity. Finally, since µh,Σh are unknown from the data, the approximations

F
(approx.)
reaction are converted back to the standard space F̂ (approx.)

reaction using (7.10).

7.3 IP3 dependent calcium oscillations

The proposed physics-based ML method is demonstrated for calcium oscillations in

non-excitable cells [105]. These occur due to calcium influx into the cytoplasm from stores

in the endoplasmic reticulum (ER) through IP3 receptors (IP3Rs) in the membrane. A

classic model by Ref. [102] uses ordinary differential equations and treats the channel at

equilibrium, as shown in Figures 7.2.

A key result is a bifurcation diagram for calcium oscillations, shown in Figure 7.2(c).

A Hopf bifurcation occurs at [IP3] ∼ 0.4µM beyond which oscillations arise. Beyond

[IP3]∼ 0.6µM, a stable elevated level of calcium is observed.

Figure 7.2(c) compares the bifurcation diagram with the range of oscillations observed

in a stochastic version of the Ref. [102] model. The receptor channel states and transport

through the channel are simulated using the Gillespie method, with identical parameters to

those in [102]. For the stochastic model, two cytoplasm volumes are considered: 10−12 L

and 10−14 L, and the number of IP3R is varied. The range of oscillations show the
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Figure 7.2: (a) Schematic of IP3 dependent calcium oscillations. Clusters of IP3Rs
in the ER membrane are activated by cytosolic calcium and IP3 (1), allowing calcium
transport into the cytoplasm (2). Further binding inhibits the channel (3), and eventual
recovery recycles the calcium store (4). (b) Channel states of one of three subunits
(Appendix E.1.1). (c) Range of oscillations in the stochastic and deterministic [102]
models for different volumes and numbers of IP3Rs. Error bars indicate 95% confidence
levels.

maximum/minimum over 40 s of the mean calcium concentration plus/minus a standard

deviation. Spontaneous calcium spikes continue to arise in the stochastic model even at

high IP3 concentrations.

7.3.1 Learning calcium oscillations

The DBD architecture is applied to learn calcium oscillations over a subset of IP3

concentrations. Figure 7.3 shows the range of oscillations learned for V = 10−14L and

100 IP3R receptors. The training data consists of simulations at IP3 concentrations over

[0.4,1]µM in intervals of 0.1µM. Two subnet models are explored: a deep & wide subnet
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Figure 7.3: Incorporating reaction approximations improves generalization (black).
Two subnets are compared: (a) a deep & wide subnet, and (b) a shallow & thin subnet.
The IP3 concentrations used as training data are highlighted (blue). A comparison
architecture using the same subnet but missing reaction approximations is also shown
(cyan). Shading shows 95% confidence intervals from 10 optimization trials.

consisting of 8 layers of width 500 units, and a shallow & thin subnet consisting of a

single layer of 25 units, both using ReLU activation functions and dropout. Three species

are used in the effective probability distribution (7.4): Ca2+, IP3 and a latent species X.

The reaction approximations used are those from enumerating the Lotka-Volterra system

(Appendix E.3): P → 2P , H→∅, and H+P → 2H, allowing each combination of {H,P}

from {Ca2+, IP3,X}.

To demonstrate how domain-specific knowledge improves generalization, a com-

parison parameter-only model is shown, equivalent to Figure 7.1 but missing the reaction

approximations (Appendix E.3.4). Both models are trained using the Adam optimizer [69]

with batch size 64 and learning rate 10−3. The deep subnet is trained for 25 rounds with

weight clipping beyond a cutoff magnitude of 5; the shallow subnet for 200 rounds and

weight cutoff 1. Between the parameter-only and the reaction model, the latter generalizes
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better to IP3 concentrations not observed during training. Further, the reaction model out-

performs the comparison at keeping concentrations non-negative over the domain explored,

although this is not explicitly enforced.

The generalization of the parameter-only model is better for the deep subnet than

for the shallow subnet, partly because multiple layers of dropout improve generalization.

However, the reaction model generalizes well even for the very low parameter shallow

subnet. Figure 7.4(a) shows the integrated parameters at two slices of IP3 using the Euler

method. The reaction models learn the curves more exactly on both training and validation

sets. This is quantified by a lower mean-squared error (MSE) shown in Figure 7.4(b).
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Figure 7.4: (a) Parameters from the shallow subnet model from slices of Figure 7.3 at
[IP3] = 0.7µM and [IP3] = 1.3µM. The reaction model learns a more detailed model. (b)
MSE for the learned parameters θ̂ in the models of Figure 7.3, with training data in blue.
Models with reaction approximations decrease MSE by up to an order of magnitude.
Shading shows 95% confidence intervals from 10 optimization trials. (c) MSE of a second
model generalizing in IP3 receptor number, with 95% confidence intervals from 40 trials,
and training data in blue.
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7.3.2 Encoding conservation

A second axis to generalize in is the number of IP3Rs. The PCA model is now

formulated for four species {Ca2+, IP3, IP3R,X} (the variance of IP3R is set to a small

constant 10−7 in the ML step). Since the receptor number is conserved in the simulations,

the reaction approximations are extended with three of the form A+ IP3R→ IP3R, where

A is one of {Ca2+, IP3,X}. This explicitly conserves IP3R in the input approximations.

Figure 7.4(c) shows the MSE over parameters for this model, trained on simulations

at IP3Rs over [500,1000] in intervals of 100. The reaction model outperforms the parameter-

only model over the validation set covering 1000 to 5000 receptors. Training used the

Adam optimizer for 25 rounds, with learning rate 10−3 and batch size 64. The subnet has 5

hidden layers of 150 units, ReLU activations, dropout rate 0.1, and weight cutoff 0.5.

7.4 Discussion

The power of DBDs is that knowledge of the domain can be explicitly built into the

learning problem. This is possible due to the tight connection between reduced and fine

scale models. Both are Markovian, depending only on the current point in parameter space.

Moreover, because the reduced model is formulated by differential equations (7.5), reaction

network physics could be built in through candidate functions derived from the master

equation. Additionally, conservation laws for IP3R were included in the network inputs.

These connections to the underlying physics differentiate DBDs from how neural networks

are commonly used for time series regression, and other methods including hidden Markov

models (HMMs) and recurrent neural networks (RNNs). A further desired property is that

the learned covariance matrix C(t) is positive semidefinite at all times. This is the case

for the PCA model (7.7) due to the transformation (7.10), but not for a generic Gaussian

distribution. Additionally, the means µ(t) should be non-negative to represent particle
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counts. This is not enforced explicitly, but is observed for the reaction models in Figure 7.3.

Other methods have been proposed that learn a neural network representing a

differential equation directly from parameters without explicitly incorporating domain-

specific physics [99, 100, 101]. A related method that uses candidates is SINDy [44], but

its differential equations are linear and struggle with model reduction, where candidates

do not include the true dynamics. Further, its candidates are arbitrary polynomial

forms, and not necessarily connected to underlying physics. For graphical models, graph-

constrained correlation dynamics (GCCD) [10] has used polynomial and exponential

candidates non-linearly with neural networks. Parameterizations using basis functions from

finite elements [17, 18] have also been used. In these cases, for graphical models other

than PCA (7.7), the ML parameters can be estimated by the Boltzmann machine learning

algorithm [13] or by expectation maximization [26].

One avenue for improvement is to include approximations for small networks rather

than just individual reactions. DBDs may also be extendable to delay differential equations

to improve regression performance. Alternatively, this may be implemented using tailored

input reaction motifs. Further closure approximations beyond the Gaussian closure can

also be included as candidates.

While the models considered have no spatial dependence, the approach is equally

valid for spatial systems [16, 17]. A spatial model of IP3-dependent calcium oscillations

may include plasma membrane pumps and feedback on IP3 production. One application of

DBDs is to synaptic neuroscience, where simulations of signaling pathways [3] could be used

to build models that are computationally efficient and generalize well to new stimulation

patterns. Beyond reaction-diffusion systems, applications to other domains such as neural

populations [106] may be possible.
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Chapter 8

Conclusion

This thesis has introduced a machine learning approach to model reduction for

stochastic reaction networks. It is based on the Boltzmann machine learning algorithm [13]

to simultaneously estimate a Boltzmann distribution with time dependent interactions,

and a reduced differential equation model. The key strength of this DBD formalism is

that prior knowledge can be incorporated into the machine learning framework. This

is particularly promising for modeling applications in science, where a wealth of prior

knowledge is typically available for the system under consideration. For example, for

reaction-diffusion systems, the chemical master equation (CME) has been extensively

studied, from perturbation theory to moment closure approximations. DBDs are one of a

small but growing hybrid class of methods that incorporate both first principles physics

and statistical inference methods.

The dynamic Boltzmann distribution is motivated by its connection to Markov

random fields (MRFs). Prior knowledge can be encoded in the graphical model, such as

the known structure of complexes like calcium/calmodulin-dependent protein kinase II

(CaMKII) [10]. Another example is for lattice based systems, where the connectivity of the

graph encodes the range of correlations that are relevant to the problem [17], with multiple
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hidden layers capturing longer range spatial correlations as they appear in the differential

equations for moments [18].

The differential equation models are motivated by considering analytic solutions to

simple reaction motifs [16]. These may be exact solutions for simple systems, or approximate

solutions, for example under a moment closure approximation. Linear combinations of

these basis have a close connection to the true master equation physics - the coefficients are

directly the reaction rates in the reduced model reaction network, as explored in Chapter 5.

Non-linear combinations can also be learned, for example through neural networks in

Chapter 7. Incorporating the candidate functions enables shallow networks with fewer

parameters to be used, and the learned latent parameters are observed to converge more

consistently, indicating that the network is more effective at discovering emergent order.

Finally, effective partial differential equations may be learned on a given mesh directly

from data as shown for lattice systems in Chapter 6.

The ability to introduce domain-specific knowledge sets DBDs apart from other

methods for time series regression, including convolutional neural networks (CNNs), recur-

rent neural networks (RNNs), autoregressive models and hidden Markov models (HMMs).

Mapping to a differential equation model can likewise be useful for engineering applications,

allowing constraints to be efficiently introduced into BM learning. A further advantage

of this strategy is that it offers a natural description of systems where neither time nor

space are discretized, i.e. the system is described by random variables representing space

continuously and varying continuously in time. Spatially continuous descriptions are benefi-

cial when confined geometries would introduce error into lattice-based methods, e.g. when

modeling reaction-diffusion systems at synapses [3].

Chapter 7 in particular highlights an important point for scientific modeling. In

the debate between whether models should be based on first principles physics or whether

they should be data driven and discover emergent phenomena from examples, it is clearly
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demonstrated that the best performance is achieved by hybrid models that can do both.

Similar results have emerged in other areas of machine learning. Kernel methods such

as support vector machines (SVMs) saw substantial performance boosts by encoding

symmetries into kernels [91]. Image detection using convolutional neural networks (CNNs)

has been improved by incorporating pose estimation, introducing 3D information about the

image contents [92]. Automatic speech recognition models, too, have come full circle. The

state of the art in this field used be systems which combined language models, pronunciation

tables and acoustic models, rather than neural networks. The rise of end-to-end training

methods, however, produced approaches such as deep learning of acoustic models in an

end-to-end fashion [107] which allow the best of both worlds: encoding known structure

and allowing blackbox inference.

Multiple avenues for improvement exist. For the learning problem of Chapter 5,

parameterizations of the partial differential equations may be a promising way for modeling

large simulations of synaptic biochemistry. Several candidates exist beyond those discussed.

While interactions of arbitrary order can be included in the energy function, intuition

suggests that models including only bias terms and pairwise interactions between two

particles may be effective. Instead of considering arbitrary pairwise interactions, they may

be parameterized, for example by the spherical harmonics such as those that arise in the

wavefunctions in Hydrogen atoms. Alternatively, in density functional theory (DFT), the

radially symmetry basis functions of Behler & Parrinello [108] have been highly successful.

For the physics-based machine learning method of Chapter 7, one avenue for

improvement is to include approximations for small networks rather than just individual

reactions. This may include tailored reaction motifs such as substrate-enzyme-product

networks that encode longer time behavior. Further closure approximations beyond the

Gaussian closure can also be included as candidates.

While the models considered in Chapter 7 have no spatial dependence, the approach
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is equally valid for spatial systems. A spatial model of IP3-dependent calcium oscillations

may include plasma membrane pumps that can act as a clamp on the calcium concentration

in the cytoplasm. Further, the feedback on IP3 production modules calcium spiking over

long timescales. Spatial models of the oscillations in MCell may be of broad interest

to the elucidate how whole cell calcium spiking arises from smaller calcium puff events

surrounding the receptors. The diffusion of calcium between channel clusters is speculated

to synchronize these stochastic puffs, leading to more deterministic oscillations at the whole

cell level [109].

More broadly, dynamic Boltzmann distributions are a promising avenue for models

of synaptic biochemistry that bridge scales. Algebraic multigrid methods may have a

key role in this, where for example W-cycle may iteratively switch between the fine scale

stochastic simulation models and coarser scale dynamic Boltzmann distributions. Here,

model reduction is done by solving the learning problem; prolongation is done by sampling

the Boltzmann distribution.

A more direct method to link the reaction networks of ions with the assembly of

larger complexes could also be possible. Consider for example synaptic morphodynamics,

the changing size and shape of synapses that is thought to be the fundamental process

of learning and memory in the brain. The synapse grows and shrinks on the timescale

of minutes due to the reorganization of the actin cytoskeleton. These processes which

include bundling of filamentous actin, branch fusion and nucleation are well described

by a dynamical graph grammar [110]. The processes are regulated on a much shorter

timescale over µs to s due to the influx of calcium into the post-synaptic spin head and

its downstream signaling pathways including CaMKII-β. Constructing reduced models

through dynamic Boltzmann distributions of each actin reorganization described by a

dynamical graph grammar and calcium signaling described by a reaction network may offer

a multiscale modeling approach to describe the morphological changes at the synapse that
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result from different stimulation patterns.

The DBD approach developed in this thesis are part of this bigger goal: to develop

multiscale modeling methods for synaptic neuroscience. Once established, these data-driven

methods will be widely applicable in cellular neuroscience, and may aid in the development

of pharmaceutical targets for learning deficits associated with aging and neurological

disorders such as Alzheimers.
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Appendix A

Derivation of Fick’s second law from

the master equation

Recall the generating function setting of Chapter 2.4.2. To ease notation, we consider

only one species with diffusion constant D, and therefore drop any species labels. We derive

the differential equations for the lowest order observables ∂〈n(y)〉/∂t, where n(y) counts

the number of particles at a point y in 3D space. In the generating function formalism:

g[z](t) =
∞∑
n=0

∫
dx p(n,x, t)

n∏
i=1

z(xi),

n(y) = z(y) δ

δz(y) ,

Wdiff =D
∫
dy z(y)∇2

y
δ

δz(y) .

(A.1)

then for the diffusion operator:

Wdiff g =D
∫
dy z(y)∇2

y

∑
n

∫
dx p(n,x)

 n∑
i=1

δ(xi−y)
∏
j 6=i

z(xj)


=D

∑
n

∫
dx

 n∑
i=1
∇2
xip(n,x)

 n∏
i=1

z(xi)
 ,

(A.2)
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where we have used the property of the variational derivative:

∫
dx f(x)δ(x−y) = f(y). (A.3)

Applying the variational derivative gives:

z(y) δ

δz(y)(Wdiff g)
∣∣∣∣∣∣
z=1

=z(y)D
∑
n

∫
dx

 n∑
i=1
∇2
xip(n,x)


 n∑
i1=1

δ(xi1−y)
∏
i2 6=i1

z(xi2)


∣∣∣∣∣∣
z=1

=D
∑
n

∫
dx

 n∑
i=1
∇2
xip(n,x)


 n∑
i1=1

δ(xi1−y)


=D∇2

y

∑
n

∫
dx p(n,x)

 n∑
i1=1

δ(xi1−y)


=D∇2

y

〈
n(y)

〉
,

(A.4)

gives the desired result:
∂〈n(y)〉
∂t

=D∇2
y〈n(y)〉. (A.5)
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Appendix B

Dynamic Boltzmann distributions

B.1 Derivation of Differential Equation System for

Variational Term

B.1.1 Well-Mixed Case

Consider the differential equation system (4.13). Represent the solution as a

functional of the basis functions F using the notation

νk′(t′) = Jk′ [{F}], (B.1)

where {F}= {Fl | l = 1, . . . ,K}, and J results from solving (4.13). Further, let {J [{F}]}=

{Jl[{F}] | l = 1, . . . ,K}, then (4.13) is:

d

dt′
Jk′ [{F}] = Fk′({J [{F}]}). (B.2)
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To find the variational term δνk′(t′)/δFk({ν}), let Fk→ Fk + εη using the notation

{F ′}= {Fl+ δl,kεη|l = 1, . . . ,K}, (B.3)

then:
d

dt′
Jk′ [{F ′}] = Fk′({J [{F ′}]}) + δk′,kεη({J [{F ′}]}). (B.4)

Differentiating with respect to ε at ε= 0 gives:

d

dt′

dJk′ [{F ′}]
dε

∣∣∣∣∣∣
ε=0

=
K∑
l=1

∂Fk′({ν(t′)})
∂νl(t′)

dJl[{F ′}]
dε

∣∣∣∣∣∣
ε=0

+ δk′,kη({ν(t′)}). (B.5)

Substitute the definition of the functional derivative

dJk′ [{F ′}]
dε

∣∣∣∣∣∣
ε=0

=
∫
dν1· · ·

∫
dνK

δνk′(t′)
δFk({ν})

η({ν}) (B.6)

to obtain (4.15):

d

dt′

(
δνk′(t′)
δFk({ν})

)
=

K∑
l=1

∂Fk′({ν(t′)})
∂νl(t′)

δνl(t′)
δFk({ν})

+ δk′,kδ({ν}−{ν(t′)}). (B.7)

B.1.2 Spatially Heterogeneous Example: Diffusion in 1D

Consider a diffusion process in 1D, described by single basis functional parameterized

according to:

d

dt′
ν(y′, t′) =F [ν(y′, t′)]

=F (1)(ν(y′, t′))
(
∂y′ν(y′, t′)

)2
+F (2)(ν(y′, t′))

(
∂2
y′ν(y′, t′)

)
.

(B.8)

Use the functional notation:

ν(y′, t′) = J [{F}], (B.9)
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where {F}= {F (1),F (2)} and J results from solving (4.33), then:

d

dt
J [{F}] = F (1)(J [{F}])

(
∂y′J [{F}]

)2
+F (2)(J [{F}])∂2

y′J [{F}]. (B.10)

To find the variational term δν(y′, t′)/δF (γ)(ω) for γ = 1,2, let F (γ)→ F (γ) + εη.

Use the notation:

{F ′}= {F (1) + δγ,1εη,F
(2) + δγ,2εη}, (B.11)

then

d

dt
J [{F ′}] =F (1)(J [{F ′}])

(
∂y′J [{F ′}]

)2
+F (2)(J [{F ′}])∂2

y′J [{F ′}]

+ δγ,1εη(J [{F ′}])
(
∂y′J [{F ′}]

)2
+ δγ,2εη(J [{F ′}])∂2

y′J [{F ′}].
(B.12)

Take the derivative with respect to ε at ε= 0:

d

dt

dJ [{F ′}]
dε

∣∣∣∣∣∣
ε=0

=
∂F (1)(ν)

∂ν

(
∂y′ν

)2
+ ∂F (2)(ν)

∂ν
∂2
y′ν


dJ [{F ′}]

dε

∣∣∣∣∣∣
ε=0


+
δγ,1 (∂y′ν)2

+ δγ,2∂
2
y′ν

η(ν)

+ 2F (1)(ν)∂y′ν
∂

∂y′

dJ [{F ′}]
dε

∣∣∣∣∣∣
ε=0


+F (2)(ν) ∂

2

∂y′2

dJ [{F ′}]
dε

∣∣∣∣∣∣
ε=0

 ,

(B.13)

where ν = ν(y′, t′) everywhere. Substituting the definition of the functional derivative

dJ [{F ′}]
dε

∣∣∣∣∣∣
ε=0

=
∫
dω

δν(y′, t′)
δF (γ)(ω)

η(ω) (B.14)
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gives

d

dt

(
δν

δF (γ)(ω)

)
=
∂F (1)(ν)

∂ν

(
∂y′ν

)2
+ ∂F (2)(ν)

∂ν
∂2
y′ν

( δν

δF (γ)(ω)

)

+
δγ,1 (∂y′ν)2

+ δγ,2∂
2
y′ν

δ(ν−ω)

+ 2F (1)(ν)∂y′ν
∂

∂y′

(
δν

δF (γ)(ω)

)
+F (2)(ν) ∂

2

∂y′2

(
δν

δF (γ)(ω)

)
.

(B.15)

B.2 Evaluating Basis Functions Numerically

To compute the basis functions numerically using (4.41), an efficient method is

possible if the eigenvalues of the transfer matrix M are singular. Let the eigenvalues be λi

with corresponding eigenvectors ui. Define:

pij(α) = uᵀi (∂αM)uᵀj (B.16)

for α = h,J , where ∂αM denotes component-wise differentiation of M . Also note that

pij(α) = pji(α) is symmetric. Then the derivatives of the eigenvalues are given by: [111]

∂αλi = pii(α),

∂α∂βλi = uᵀi (∂α∂βM)ui+ 2
∑
j 6=i

pij(α)pij(β)
λi−λj

,
(B.17)

for β = h,J . The principle advantage of this approach lies in the fact that the analytic

expressions for ∂αM and ∂α∂βM are simpler to derive than differentiating the analytic

expressions for the eigenvalues λ.

It is now straightforward to numerically evaluate the components ∂α∂β lnZ of (4.41)

in the thermodynamic limit lnZ ≈N lnλ+, where λ+ is the largest eigenvalue of the transfer

matrix and N the length of the chain.
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B.3 Alternative Solutions for the Variational Terms

B.3.1 Well-Mixed Case: Alternate PDE Solution

Consider the differential equation system

d

dt
νk(t) = Fk

(
{ν}

)
,

with I.C.: νk(t= 0) = ηk.

(B.18)

Use the chain rule:

d

dt
νk′(t′) =

K∑
l=1

∂νk′(t′)
∂ηl

dηl
dt′

=
K∑
l=1

∂νk′(t′)
∂ηl

Fl({η}). (B.19)

Now take the variational derivative δ/δFk({ν}) and use the product rule:

d

dt

(
δνk′(t′)
δFk({ν})

)
=

K∑
l=1

(
δ

δFk({ν})
∂νk′(t′)
∂ηl

)
Fl({η}) +

K∑
l=1

∂νk′(t′)
∂ηl

δFl({η})
δFk({ν})

=
K∑
l=1

Fl({η})
∂

∂ηl

(
δνk′(t′)
δFk({ν})

)
+
 K∏
l=1

δ(νl−ηl)
 ∂νk′(t′)

∂ηk
.

This may be evaluated in practice from the initial condition δνk′(0)/δFk({ν}) = 0, where

∂νk′(t′)/∂ηk is evaluated numerically by perturbing the initial conditions and integrat-

ing (B.18).

B.3.2 Well-Mixed Case: Lie Series Solution

A further alternative solution is provided by the use of Lie series [25]. The au-

tonomous differential equation system (B.18) has formal solution:

νk′(t′) = exp
(
t′D

)
◦ηk′ (B.20)
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for the operator

D ≡
K∑
l=1

Fl({ν})
∂

∂νl
, (B.21)

Using the notation

M
(n)
k′ ({η})≡ (Dnνk′)

∣∣∣∣
{ν}={η}

. (B.22)

where {η}= {ηk′}Kk′=1, this is

νk′(t′) =
∞∑
n=0

(t′)n
n! M

(n)
k′ ({η}). (B.23)

The terms M (n)
k′ ({η}) obey the recursion relationships

M
(0)
k′ ({η}) = ηk′ ,

M
(1)
k′ ({η}) = Fk′({η}),

M
(n)
k′ ({η}) =

K∑
l=1

Fl({η})
∂M

(n−1)
k′ ({η})
∂ηl

for n≥ 2.

(B.24)

From (B.23), we have
δνk′(t′)
δFk({ν})

=
∞∑
n=0

(t′)n
n!

δM
(n)
k′ ({η})

δFk({ν})
, (B.25)

where

δM
(0)
k′ ({η})

δFk({ν})
= 0,

δM
(1)
k′ ({η})

δFk({ν})
= δk,k′

K∏
l=1

δ(νl−ηl),
(B.26)
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and for n≥ 2:

δM
(n)
k′ ({η})

δFk({ν})
=
 K∏
l=1

δ(νl−ηl)
 ∂M (n−1)

k′ ({η})
∂ηk

+
K∑
l=1

Fl({η})
∂

∂ηl

δM (n−1)
k′ ({η})
δFk({ν})

 . (B.27)

B.3.3 Spatially Heterogeneous Case: Alternate PDE Solution

Consider the spatially local model

d

dt
νk(β,y, t) =F (0)

k ({ν(β,y, t)})

+
k∑

λ=1

F (1,λ)
k ({ν(β,y, t)})

∑
〈i〉kλ

λ∑
m=1

(
∂mνλ(β〈i〉kλ ,y〈i〉kλ , t)

)2

+F
(2,λ)
k ({ν(β,y, t)})

∑
〈i〉kλ

λ∑
m=1

∂2
mνλ(β〈i〉kλ ,y〈i〉kλ , t)

,
with I.C.: νk(β,y, t= 0) =ηk(β,y).

(B.28)

For brevity, we neglect the species label, which may be inserted trivially at the end. Use

the chain rule:
d

dt
νk′(y′, t′) =

K∑
l=1

∫
dz
∂νk′(y′, t′)
∂ηl(z)

dηl(z)
dt′

. (B.29)

Now take the variational derivative δ/δF (γ)
k ({ν(y)}) and use the product rule:

d

dt

 δνk′(y′, t′)
δF

(γ)
k ({ν(y)})

=
K∑
l=1

∫
dz
dηl(z)
dt′

∂

∂ηl(z)

 δνk′(y′, t′)
δF

(γ)
k ({ν(y)})


+
∫
dz
∂νk′(y′, t′)
∂ηk(z)

δ

δF
(γ)
k ({ν(y)})

dηk(z)
dt′

.

(B.30)
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We can use (B.28) at t = 0 to evaluate dηl(z)/dt′ in the first term. Further, taking the

variational derivative to evaluate the second term:

δ

δF
(γ)
k ({ν(y)})

dηk(z)
dt′

=δ({ν(y)}−{η(z)})

×

δ(γ),(0) +
k∑

λ=1

δ(γ),(1,λ)
∑
〈i〉kλ

λ∑
m=1

(
∂mηλ(z〈i〉kλ)

)2

+ δ(γ),(2,λ)
∑
〈i〉kλ

λ∑
m=1

(
∂2
mηλ(z〈i〉kλ)

),
(B.31)

where as before ∂m denotes the derivative with respect to the m-th component of z〈i〉kλ ,

and we use the following notation for the multi-dimensional Dirac delta function

δ({ν(y)}−{η(z)}) =
k∏

k′=1

∏
〈i〉kk′

δ
(
νk′(y〈i〉kk′ )−ηk

′(z〈i〉kk′ )
)
. (B.32)

It remains to numerically solve the PDE (B.30) using the initial condition:

δνk′(y′, t′ = 0)
δF

(γ)
k ({ν(y)})

= 0 (B.33)

everywhere for all y.
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Appendix C

Learning problem for spatial

dynamic Boltzmann distributions

C.1 Formal solution for the adjoint system

The connection between (4.11) and (5.19) can be made more explicitly. A differential

equation system for the perturbations δνk(α〈i〉nk ,x〈i〉nk , t) in (4.11) can be derived by lin-

earizing the differential equation around a particular solution [16, 56]. For the autonomous

system (5.18), this leads to the linear ODE system:

d

dt
δν(α,x, t) = δF (α,x, t) +G(α,x, t)δν(α,x, t) (C.1)

with some given initial condition δν(α,x, t0) = δη(α,x). Here we have used the vector

notation introduced in Section 5.1.2.

Let the homogenous part of this system

d

dt
δν(α,x, t) =G(α,x, t)δν(α,x, t) (C.2)
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have solution given by the non-singular fundamental matrix A(α,x, t). Then (C.1) has as

formal solution

δν(α,x, t) =A(α,x, t)
δη(α,x) +

∫ t

t0
dt′ A−1(α,x, t′)δF (α,x, t′)

, (C.3)

which substituted into (4.11) gives:

0 = δS =
∫ tf

t0
dt
∞∑
n=0

∑
α

∫
dx∆µᵀ(α,x, t)A(α,x, t)

δη(α,x)

+
∫ t

t0
dt′ A−1(α,x, t′)δF (α,x, t′)

,
(C.4)

where ∆µᵀ(t) is the vector with components (5.8). Applying integration by parts on the

term in parentheses to move the integral over time gives

(
δη(α,x) +

∫ tf

t0
dt′ A−1(α,x, t′)δF (α,x, t′)

)(∫ t

t0
dt′ ∆µᵀ(α,x, t′)A(α,x, t′)

)∣∣∣∣∣∣
tf

t=t0

−
∫ tf

t0
dt
∫ t

t0
dt′ ∆µᵀ(α,x, t′)A(α,x, t′)A−1(α,x, t)δF (α,x, t),

(C.5)

where the adjoint functions ζ(t) can be identified as:

ζᵀ(α,x, t) =
∫ t

t0
dt′ ∆µᵀ(α,x, t′)A(α,x, t′)A−1(α,x, t). (C.6)

By choosing the adjoint functions to satisfy the boundary condition ζ(α,x, tf ) = 0, the

boundary term in (C.5) vanishes and we obtain the previous result (4.14).
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C.2 Derivation of moment equations from the chem-

ical master equation

The moment equations (6.17,6.24) can be derived from the chemical master equation

using the Doi-Peliti [20] formalism and its equivalent generating function representation.

We demonstrate this for the Rössler system (6.24).

For notational convenience, we do not consider the single occupancy limit here. The

state of the system is described by the N ×M matrix V ′ with entries vi,α ∈ {0,1,2, . . .},

where N = 10×10×10 rows denote lattice sites, and M = 3 columns denote occupancies

of species {A,B,C}.

Define the N ×M single-entry matrix eij with entries zero everywhere except at

index (i, j) where it is one. The creation and annihilation operators âi,α and ai,α create

and destroy particles of species α at unit i:

âi,α
∣∣∣V ′〉=

∣∣∣V ′+ei,α〉 ,
ai,α

∣∣∣V ′〉= vi,α
∣∣∣V ′−ei,α〉 . (C.7)

The operators corresponding to reactions in the Rössler system (excluding diffusion) are
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then:

A→ 2A : k1
N∑
i=1

(
âi,A−1

)
âi,Aai,A,

2A→ A : κ1
∑
〈ij〉

(
1− âj,A

)
âi,Aai,Aaj,A,

A+B→ 2B : κ2
∑
〈〈ij〉〉

(
âi,B− âi,A

)
âj,Bai,Aaj,B,

A+C→∅ : κ3
∑
〈〈ij〉〉

(
1− âi,Aâj,C

)
ai,Aaj,C ,

B→∅ : k2
N∑
i=1

(
1− âi,B

)
ai,B,

C→ 2C : k3
N∑
i=1

(
âi,C −1

)
âi,Cai,C ,

2C→ C : κ4
∑
〈ij〉

(
1− âj,C

)
âi,Cai,Caj,C ,

(C.8)

where ∑〈ij〉 sums over all neighboring sites without double counting, ∑〈〈ij〉〉 sums over all

neighboring sites with double counting, and we specify the species {A,B,C} instead of an

index α = 1, . . . ,M for clarity in the subscripts. Here we place new particles resulting from

fission reactions with rates k1 and k3 at the same site - in the single occupancy limit, they

must be placed at a neighboring site. For bimolecular reactions with rates κ1 and κ4, we

make the in this case ambiguous choice to place new species at site i versus j. The time

evolution operator W for the Rössler system is the sum of all terms in (C.8).

The system state and the ladder operators admit an equivalent generating function
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representation:

∣∣∣V ′〉→ N∏
i=1

M∏
α=1

z
vi,α
i,α ,

âi,α→ zi,α,

ai,α→
∂

∂zi,α
.

(C.9)

An observable 〈X〉 with generating function representation Xz according to (C.9)

evolves as:
d〈X〉
dt

=
XzW

N∏
i=1

M∏
α=1

z
vi,α
i,α

∣∣∣∣∣∣
z=1

, (C.10)

where W is now the sum of terms (C.8) in the generating function representation (C.9).

From the number operator âk,βak,β which counts the number of particles of species β at

position k, the time evolution of the mean number of particles of species β is then

dµβ
dt

=
 N∑
k=1

zk,β
∂

∂zk,β
W

N∏
i=1

M∏
α=1

z
vi,α
i,α

∣∣∣∣∣∣
z=1

, (C.11)

which can be directly evaluated to give the moment equations (6.24). For a review on field

theoretic methods for reaction-diffusion systems, we refer to Ref. [103]. The formalism can

also describe systems in continuous space [20] where it has a similar generation function

representation [16].
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C.3 Learning diffusion constant derivations

C.3.1 Variable to fixed number of particles

A simple Gaussian distribution for n particles in 3D is

q(x, t) = (4πDt)−3n/2 exp
− n∑

i=1

(xi−µ)2

4Dt

. (C.12)

To represent this as a spatial dynamic Boltzmann distribution, which allows for a variable

number of particles m, we can consider a very tight Gaussian on the fixed n:

p̃(m,x, t) = 1
Z(t) exp

− m∑
i=1

ν̂1(xi, t)−mν1−
(
m

2

)
ν2

,
Z(t) =

∞∑
m=0

∫
dx exp

− m∑
i=1

ν̂1(xi, t)−mν1−
(
m

2

)
ν2

,
(C.13)

where we make the following choices:

ν1 = 1/2−n
σ2 ,

ν2 = 1
σ2 ,

ν̂1(xi, t) = (xi−µ)2

4Dt .

(C.14)

Note that with these choices:

exp
−mν1−

(
m

2

)
ν2

∝ exp
−(m−n)2

2σ2

 (C.15)
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is a Gaussian about n. By choosing a very small σ2, we have a distribution which essentially

fixes the number of particles as constant n. In this case:

Z(t)≈
∫
dxexp

− n∑
i=1

ν̂1(xi, t)
=

(∫
dy exp

[
−ν̂1(y, t)

])n
, (C.16)

therefore:

p̃(m,x, t)≈ δm,n
exp

[
−∑n

i=1 ν̂1(xi, t)
](∫

dy exp
[
−ν̂1(y, t)

])n . (C.17)

In this case, we may also write:

p̃(m,x, t)≈ δm,n exp
− n∑

i=1
ν1(xi, t)

,
ν1(xi, t) = ν̂1(xi, t) + log

(∫
dy exp

[
−ν̂1(y, t)

])
.

(C.18)

C.3.2 Derivation of diffusion equation for ν1

Assume the form of the reduced model is:

p̃(x, t) = exp
− n∑

i=1
ν1(xi, t)

. (C.19)

Substituting p̃ into the diffusion equation, we find:

∂tν1(x,t) =D∇2ν1(x,t)−D
(
∇ν1(x,t)

)2 . (C.20)

Note that ν̂1 obeys:

−∂tν̂1(xi, t)−
∫
dy

(
∂tν̂1(y, t)

)
exp

[
−ν̂1(y, t)

]∫
dy exp

[
−ν̂1(y, t)

] =D
(
∇iν̂1(xi, t)

)2−D∇2
i ν̂1(xi, t). (C.21)
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If we start with an initial Gaussian distribution, then:

ν̂1(xi, t) = (xi−µ)2

4Dt ,∫
dy exp

[
−ν̂1(y, t)

]
= (4πDt)3/2,

ν1(xi, t) = (xi−µ)2

4Dt + 3
2 log(4πDt).

(C.22)

Only for the Gaussian distribution, we can evaluate the integral term in the differential

equation (C.21) for ν̂1:

∫
dy

(
∂tν̂1(y, t)

)
exp

[
−ν̂1(y, t)

]∫
dy exp

[
−ν̂1(y, t)

] =− 1
2t . (C.23)

C.3.3 Weak formulation of forward problem

Approximate the time derivative using backward Euler

ν
(n+1)
1 (x)−ν(n)

1 (x)
∆t =D∇2ν

(n+1)
1 (x)−D

(
∇ν(n+1)

1 (x)
)2
, (C.24)

and rearrange to collect n+ 1 terms on one side:

ν
(n+1)
1 (x)−∆tD∇2ν

(n+1)
1 (x) + ∆tD

(
∇ν(n+1)

1 (x)
)2

= ν
(n)
1 (x). (C.25)

Introducing test function v and integrating over the domain Ω with differential element dω

gives

∫
Ω
dx ν

(n+1)
1 (x)v(x)−∆tD

∫
Ω
dx∇2ν

(n+1)
1 (x)v(x) + ∆tD

∫
Ω
dx

(
∇ν(n+1)

1 (x)
)2
v(x)

=
∫

Ω
dx ν

(n)
1 (x)v(x).

(C.26)
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Integrate by parts on the second derivative term:

∫
Ω
dx∇2ν

(n+1)
1 (x)v(x) =

∫
Γ
dx∇ν(n+1)

1 (x) · n̂v(x)−
∫

Ω
dx∇ν(n+1)

1 (x) ·∇v(x)

=−
∫

Ω
dx∇ν(n+1)

1 (x) ·∇v(x).
(C.27)

where Γ is the boundary and n̂ the outward facing unit normal vector. The boundary term

vanishes because the trial functions v are required to vanish where the solution is known.

The weak form can be written in the following form:

G(ν(n+1)
1 (x),v) = 0. (C.28)

Note that we don’t write an explicit dependence on ν
(n)
1 because it is already known

(solution of the previous step). Specifically:

G(ν(n+1)
1 (x),v) =

∫
Ω
dx ν

(n+1)
1 (x)v(x) + ∆tD

∫
Ω
dx∇ν(n+1)

1 (x) ·∇v(x)

+ ∆tD
∫

Ω
dx

(
∇ν(n+1)

1 (x)
)2
v(x)−

∫
Ω
dx ν

(n)
1 (x)v(x) = 0.

(C.29)

Note that this is not linear due to the (∇ν1)2 term. If it were linear, it would be advantageous

instead to write it in the following form:

a(ν(n+1)
1 (x),v) = L(v). (C.30)

C.3.4 Derivation of the adjoint equation

Introduce an adjoint function ξ(y, t) to enforce the differential equation constraint

for the Lagrange multiplier ν1(y, t) which controls the constraint for the mean number of

particles at y:

µp̃(y, t) =
∫
dx p̃(x, t)

 n∑
i=1

δ(xi−y)
 , (C.31)
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Recall that ν1 obeys differential equation (C.20):

∂tν1(x,t) = F [ν1](x,t),

F [ν1](x,t) =D∇2ν1(x,t)−D
(
∇ν1(x,t)

)2 . (C.32)

Define the Lagrangian and action:

L[ν1, ξ](t) =DKL(p||p̃) +
∫
dx ξ(x,t)

(
∂tν1(x,t)−F [ν1](x,t)

)
,

J [ν1, ξ] =
∫ tf

t0
dt L[ν1, ξ](t)

(C.33)

from which the variational derivative with respect to ν1 should vanish:

0 = lim
ε→0
J [ν1 + εδν1, ξ]−J [ν1, ξ]

ε

=
∫ tf

t0
dt
∫
dx∆µ(x,t)[δν1(x,t)]

+
∫ tf

t0
dt
∫
dx ξ(x,t)

(
∂t[δν1(x,t)]−D∇2[δν1(x,t)] + 2D∇ν1(x,t) ·∇[δν1(x,t)]

)
,

(C.34)

where

∆µ(y, t) = µp̃(y, t)−µp(y, t). (C.35)

Integrating by parts gives the following result:

∫ tf

t0
dt
∫
dx ξ(x,t)∂t[δν1(x,t)]

=
∫
dx ξ(x,t)δν1(x,t)

∣∣∣∣∣∣
t=tf

t=t0

−
∫ tf

t0
dt
∫
dx ∂tξ(x,t)δν1(x,t)

=
∫
dx ξ(x,tf )δν1(x,tf )−

∫ tf

t0
dt
∫
dx ∂tξ(x,t)δν1(x,t),

(C.36)
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where one boundary vanished because δν1(x,t0) = 0 because ν1(x,t0) is specified. Further-

more:

∫ tf

t0
dt
∫
dx ξ(x,t)∇2[δν1(x,t)] =

∫ tf

t0
dt
∫

Γ
dx ξ(x,t)∇[δν1(x,t)] · n̂

−
∫ tf

t0
dt
∫
dx∇ξ(x,t) ·∇[δν1(x,t)]

=
∫ tf

t0
dt
∫

Γ
dx ξ(x,t)∇[δν1(x,t)] · n̂

−
∫ tf

t0
dt
∫

Γ
dx

(
∇ξ(x,t) · n̂

)
δν1(x,t)

+
∫ tf

t0
dt
∫
dx∇2ξ(x,t)δν1(x,t),

(C.37)

and

∫ tf

t0
dt
∫
dx ξ(x,t)∇ν1(x,t) ·∇i[δν1(x,t)] =

∫ tf

t0
dt
∫

Γ
dx ξ(x,t)

(
∇ν1(x,t) · n̂

)
δν1(x,t)

−
∫ tf

t0
dt
∫
dx ξ(x,t)∇2ν1(x,t)δν1(x,t)

−
∫ tf

t0
dt
∫
dx∇ξ(x,t) ·∇ν1(x,t)δν1(x,t).

(C.38)

Put together, this gives for the variational derivative (C.34):

0 = lim
ε→0
J [ν1 + εδν1, ξ]−J [ν1, ξ]

ε

=
∫ tf

t0
dt
∫
dx

∆µ(x,t)−∂tξ(x,t)−D∇2ξ(x,t)−2Dξ(x,t)∇2ν1(x,t)

−2D∇ξ(x,t) ·∇ν1(x,t)
δν1(x,t)

+
∫
dx ξ(x,tf )δν1(x,tf )−

∫ tf

t0
dt
∫

Γ
dx Dξ(x,t)∇[δν1(x,t)] · n̂

+
∫ tf

t0
dt
∫

Γ
dx

D (∇ξ(x,t) · n̂)δν1(x,t) + 2Dξ(x,t)
(
∇ν1(x,t) · n̂

)
δν1(x,t)

.

(C.39)
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To proceed, we must include the boundary conditions.

With Dirichlet boundary conditions

Suppose we have Dirichlet conditions on the boundary x ∈ Γ at all times t ∈ [t0, tf ]:

ν1(x,t) = g(x,t). (C.40)

We can introduce another Lagrange multiplier η to enforce this constraint:

J [ν1, ξ]→J [ν1, ξ] +
∫ tf

t0
dt
∫

Γ
dx η(x,t)(ν1(x)−g(x,t)). (C.41)

In the variational derivative, we pick up and extra term:

0 = lim
ε→0
J [ν1 + εδν1, ξ]−J [ν1, ξ]

ε

=
∫ tf

t0
dt
∫
dx

∆µ(x,t)−∂tξ(x,t)−D∇2ξ(x,t)−2Dξ(x,t)∇2ν1(x,t)

−2D∇ξ(x,t) ·∇ν1(x,t)
δν1(x,t)

+
∫
dx ξ(x,tf )δν1(x,tf )−

∫ tf

t0
dt
∫

Γ
dx Dξ(x,t)∇[δν1(x,t)] · n̂

+
∫ tf

t0
dt
∫

Γ
dx

D (∇ξ(x,t) · n̂)+ 2Dξ(x,t)
(
∇ν1(x,t) · n̂

)
+η(x,t)

δν1(x,t).

(C.42)

Here in particular see the discussion in Ref. [112] p. 20. Each term must vanish indepen-

dently. For points in the interior x ∈ Ω:

∂tξ(x,t) = ∆µ(x,t)−D∇2ξ(x,t)−2Dξ(x,t)∇2ν1(x,t)−2D∇ξ(x,t) ·∇ν1(x,t),

ξ(x,tf ) = 0,
(C.43)
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and for points on the boundary x ∈ Γ:

ξ(x,t) = 0,

D
(
∇ξ(x,t) · n̂

)
+ 2Dξ(x,t)

(
∇ν1(x,t) · n̂

)
+η(x,t) = 0.

(C.44)

In practice, since the Lagrange multiplier η only appears in the final equation, it can be

ignored unless we care about determining its value.

With Neumann boundary conditions

Suppose instead we have Neumann conditions on the boundary x ∈Gamma at all

times t ∈ [t0, tf ]:

∇iν1(x,t) · n̂= g(x,t). (C.45)

We can introduce another Lagrange multiplier η to enforce this constraint:

J [ν1, ξ]→J [ν1, ξ] +
∫ tf

t0
dt
∫

Γ
dx η(x,t)(∇ν1(x)−g(x,t)). (C.46)

In the variational derivative, we pick up and extra term:

0 = lim
ε→0
J [ν1 + εδν1, ξ]−J [ν1, ξ]

ε

=
∫ tf

t0
dt
∫
dx

∆µ(x,t)−∂tξ(x,t)−D∇2ξ(x,t)−2Dξ(x,t)∇2ν1(x,t)

−2D∇ξ(x,t) ·∇ν1(x,t)
δν1(x,t)

+
∫
dx ξ(x,tf )δν1(x,tf ) +

∫ tf

t0
dt
∫

Γ
dx

(
−Dξ(x,t) +η(x,t)

)
∇[δν1(x,t)] · n̂

+
∫ tf

t0
dt
∫

Γ
dx

D (∇ξ(x,t) · n̂)+ 2Dξ(x,t)
(
∇ν1(x,t) · n̂

)δν1(x,t).

(C.47)
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Here in particular see the discussion in Ref. [112] p. 20. Each term must vanish indepen-

dently. For points in the interior x ∈ Ω:

∂tξ(x,t) = ∆µ(x,t)−D∇2ξ(x,t)−2Dξ(x,t)∇2ν1(x,t)−2D∇ξ(x,t) ·∇ν1(x,t),

ξ(x,tf ) = 0,
(C.48)

and on the boundary x ∈ Γ:

−Dξ(x,t) +η(x,t) = 0,

∇ξ(x,t) · n̂+ 2ξ(x,t)g(x,t) = 0,
(C.49)

where we have used the definition of g(x,t) in the last equation. In practice, since the

Lagrange multiplier η only appears in the final equation, it can be ignored unless we care

about determining its value.

C.3.5 Weak formulation of the adjoint equations

In the forward problem, we solve from t= t0 to t= tf , we use a backward difference

scheme, i.e. equation for (n+ 1) given (n). In the adjoint problem, we solve from t= tf to

t= t0, we use a forward difference scheme, i.e. equation for (n) given (n+ 1). Therefore,

let:

∂tξ(y, t)≈
ξ(n+1)(y)− ξ(n)(y)

∆t , (C.50)

where:

ξ(n+1)(y)− ξ(n)(y)
∆t

=∆µ(n)(y)−D∇2ξ(n)(y)−2D∇ξ(n)(y) ·∇ν(n)
1 (y)−2Dξ(n)(y)∇2ν

(n)
1 (y).

(C.51)
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Collect (n) terms on one side:

ξ(n)(y)
∆t −D∇2ξ(n)(y)−2D∇ξ(n)(y) ·∇ν(n)

1 (y)−2Dξ(n)(y)∇2ν
(n)
1 (y)

=ξ
(n+1)(y)

∆t −∆µ(n)(y).
(C.52)

Introduce trial functions v(y):

∫
dy

ξ(n)(y)
∆t v(y)−D

∫
dy ∇2ξ(n)(y)v(y)

−2D
∫
dy ∇ξ(n)(y) ·∇ν(n)

1 (y)v(y)−2D
∫
dy ξ(n)(y)∇2ν

(n)
1 (y)v(y)

=
∫
dy

ξ(n+1)(y)
∆t v(y)−

∫
dy ∆µ(n)(y)v(y).

(C.53)

Integrating by parts gives:

∫
dy ∇2ξ(n)(y)v(y) =

∫
Γ
dy
(
∇ξ(n)(y) · n̂

)
v(y)−

∫
dy ∇ξ(n)(y) ·∇v(y),∫

dy ξ(n)(y)∇2ν
(n)
1 (y)v(y) =

∫
Γ
dy ξ(n)(y)v(y)∇ν(n)

1 (y) · n̂

−
∫
dy ∇(ξ(n)(y)v(y)) ·∇ν(n)

1 (y)

=
∫

Γ
dy ξ(n)(y)v(y)∇ν(n)

1 (y) · n̂

−
∫
dy ∇ξ(n)(y) ·∇ν(n)

1 (y)v(y)

−
∫
dy ξ(n)(y)∇ν(n)

1 (y) ·∇v(y).

(C.54)

This gives the weak form after some terms cancel:

∫
dy
ξ(n)(y)

∆t v(y)−D
∫

Γ
dy

(
∇ξ(n)(y) · n̂

)
v(y) +D

∫
dy ∇ξ(n)(y) ·∇v(y)

+ 2D
∫
dy ξ(n)(y)∇ν(n)

1 (y) ·∇v(y)−2D
∫

Γ
dy ξ(n)(y)v(y)∇ν(n)

1 (y) · n̂

=
∫
dy

ξ(n+1)(y)
∆t v(y)−

∫
dy ∆µ(n)(y)v(y).

(C.55)
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The boundary conditions for v(y) are such that it vanishes where ν1 is known. This is

detailed for the two cases below.

Dirichlet boundary conditions

For Dirichlet boundary conditions, we have that v(y) = 0 on the boundary y ∈ Γ.

Further, we had that ξ(y) = 0 on the boundary. Therefore both boundary conditions vanish,

and we are left with:

∫
dy
ξ(n)(y)

∆t v(y) +D
∫
dy∇ξ(n)(y) ·∇v(y) + 2D

∫
dyξ(n)(y)∇ν(n)

1 (y) ·∇v(y)

=
∫
dy
ξ(n+1)(y)

∆t v(y)−
∫
dy∆µ(n)(y)v(y).

(C.56)

Neumann boundary conditions

For Neumann boundary conditions, we have ∇v(y) · n̂= 0 on the boundary y ∈ Γ.

We also have: ∇ν1(y) · n̂= g(y) by definition, and from the boundary equations ∇ξ(y) · n̂=

−2ξ(y)g(y). Then:

∫
dy

ξ(n)(y)
∆t v(y) + 2D

∫
Γ
dy ξ(n)(y)g(y)v(y) +D

∫
dy ∇ξ(n)(y) ·∇v(y)

+ 2D
∫
dy ξ(n)(y)∇ν(n)

1 (y) ·∇v(y)−2D
∫

Γ
dy ξ(n)(y)v(y)g(y)

=
∫
dy

ξ(n+1)(y)
∆t v(y)−

∫
dy ∆µ(n)(y)v(y).

(C.57)

Note that the boundary terms have cancelled, leaving the same result as for the Dirichlet

boundary conditions.

193



C.3.6 Optimality condition

The optimality condition is for all boundary conditions:

dS

dD
=−

∫ tf

t0
dt
∫
dx

∂F [ν1](x,t)
∂D

ξ(x,t)

=
∫ tf

t0
dt
∫
dx

(
−∇2ν1(x,t) +

(
∇ν1(x,t)

)2)ξ(x,t). (C.58)

We can use integration by parts to eliminate an undesired second derivative in the optimality

condition:

∫ tf

t0
dt
∫
dx∇2ν1(x,t)ξ(x,t) =

∫ tf

t0
dt
∫

Γ
dx

(
∇iν1(x,t) · n̂

)
ξ(x,t)

−
∫ tf

t0
dt
∫
dx∇ν1(x,t) ·∇ξ(x,t).

(C.59)

To proceed further, we must consider the boundary conditions again.

Dirichlet boundary conditions

We have ξ(x,t) = 0 on the boundary x ∈ Γ, such that the boundary term vanishes:

dS

dD
=
∫ tf

t0
dt
∫
dx

(
∇ν1(x,t) ·∇ξ(x,t) +

(
∇ν1(x,t)

)2 ξ(x,t)) . (C.60)

Neumann boundary conditions

We have specified ∇iν1(x,t)ċ̂n= g(x,t) on the boundary x ∈ Γ, such that:

dS

dD
=−

∫ tf

t0
dt
∫

Γ
dx g(x,t)ξ(x,t)

+
∫ tf

t0
dt
∫
dx

(
∇ν1(x,t) ·∇ξ(x,t) +

(
∇ν1(x,t)

)2 ξ(x,t)) . (C.61)
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C.4 Physics-based Gaussian graphical models

C.4.1 Convert between moment and interaction space

The covariance matrix Σ is divided into free σf and constrained terms σc. The free

terms evolve exactly according to the CME σ̇f . The time evolution of the constrained

terms can then be solved for. To simplify notation, introduce the vector notations: σf and

σc of lengths nf and nc. Also define the functions to map indexes:

c1(i), c2(i) 3 σci = Σc1(i),c2(i) = Σc
c1(i),c2(i),

f1(i),f2(i) 3 σfi = Σf1(i),f2(i) = Σf
f1(i),f2(i).

(C.62)

Given the equations for dµ/dt and dσf/dt, the goal is to evaluate dν/dt at the

current ν. Here the covariance matrix Σ is divided into free σf and constrained terms σc.

The result is:

dB

dt
= dΣ−1

dt
=−Σ−1dΣ

dt
Σ−1 =−BdΣ

dt
B,

dν1
dt

=−dB
dt
µ−Bdµ

dt
+ 1

2diag
(
dB

dt

)
.

(C.63)

Note that we have to divide the terms of the covariance matrix Σ into free σf and

constrained σc parts. The equations for the free part σ̇f are given by the CME, while the

constrained ones are

σ̇c =−(Gc)−1Gf σ̇f , (C.64)
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where

Gc =Bc1,c1 ◦Bc2,c2 +Dc ◦Bc1,c2 ◦Bc2,c1 ,

Gf =Bc1,f1 ◦Bc2,f2 +Df ◦Bc1,f2 ◦Bc2,f1 ,

Dcik = (1− δc1(k),c2(k)),

Dfik = (1− δf1(k),f2(k)),

Bc1,c1
ik =Bc1(i),c1(k) and similarly for the others.

(C.65)

C.4.2 Sampling Gaussian distribution

The Gaussian distribution is:

p̃(n) = 1√
(2π)m|B−1|

exp
[
−1

2(n−a)ᵀB(n−a)
]
. (C.66)

For the awake phase, divide the n into visible variables nv and hidden nh as:

n=

nv
nh

 . (C.67)

For a generic vector and symmetric matrix, let:

x=

xv
xh

 & A=

 Cv Cᵀvh

Cvh Ch

 . (C.68)

Under the awake phase, we must clamp the visible units to the data. The conditional
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distribution for the hidden units is then:

p̃(nh|nv) =exp
[
−1

2(nh−ah+B−1
h Bvh(nv−av))ᵀBh(nh−ah+B−1

h Bvh(nv−av))
]

× 1√
(2π)mh|B−1

h |
×

√√√√ |B−1
v ||B−1

h |
|B−1|

exp
[

1
2(nv−av)ᵀBᵀvhB

−1
h Bvh(nv−av)

]
.

(C.69)

This is a Gaussian in nh. The mean and variance are:

〈nh〉= ah−B−1
h Bvh(nv−av),

Σ =B−1
h .

(C.70)

Note that the other terms cancel because they are just a normalizing factor when integrating

over nh.

For the asleep phase, the moments follow directly from (C.66).
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Appendix D

Deep learning moment closure

approximations

D.1 Variational problem for dynamic Boltzmann dis-

tributions in continuous space

A general variational problem for the reduced model describing a reaction-diffusion

systems in continuous space can be formulated as shown in [17]. Here we review the key

results, and the show connection to the deep Boltzmann machine (DBM) notation used in

this chapter.

D.1.1 Review of variational problem

The state of a reaction-diffusion system at time t is described by n particles of

species α at locations x. Introduce k-particle interaction functions νk(α〈i〉nk ,x〈i〉nk , t) for

k = 1, . . . ,K (i.e. cutoff K), where 〈i〉nk denotes an ordered subset of k indexes with each

index in {1, . . . ,n}. For example, 〈i〉32 denotes the possible subsets {1,2},{1,3},{2,3},
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and ν2 therefore considers all pairwise interactions between three particles. The dynamic

Boltzmann distribution is

p̃(n,α,x, t;{ν}) = 1
Z[{ν}] exp

− K∑
k=1

∑
〈i〉nk

νk(α〈i〉nk ,x〈i〉nk , t)

 . (D.1)

Introduce a general functional Fk to describe the time evolution of each interaction

function
d

dt
νk(α〈i〉nk ,x〈i〉nk , t) = Fk[{ν},{Fk}](α,x, t), (D.2)

where Fk are functionals of the interactions {ν} and some unspecified set of ordinary

functions {Fk}. This allows e.g. a PDE to be introduced as the reduced model.

If the form of the functionals Fk is chosen, a variational problem can be formulated

for the functions {Fk} appearing on the right hand side. Variational problems of this form

for the functions appearing on the right hand side of a differential equation have been

considered previously [56, 54, 55]. In the current framework the variational problem to

extremize an action

S =
∫ T

0
dtDKL(p||p̃) (D.3)

is derived in [17] - the result is

δS =−
∫ T

0
dt
∞∑
n=0

∑
α

∫
dx

K∑
k=1

∑
〈i〉nk

Mk∑
s=1

δJ [{ν},{ζ}](t)
δF

(s)
k ({ν(α,x, t)})

δF
(s)
k ({ν(α,x, t)}) = 0, (D.4)

where

J [{ν},{ζ}](t) =
∞∑
n′=0

∑
α′

∫
dx′ ζᵀ(α′,x′, t)F [{ν}](α′,x′, t), (D.5)

and the adjoint system is

dζ

dt
= ∆µ(α,β, t)− δJ [{ν},{ζ}](t)

δν(α,x, t) . (D.6)
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where ∆µ are the differences in the moments (by convention, the average under the model

distribution minus the average under the data distribution) for which ν are the Lagrange

multipliers.

This is the variational calculus form of the sensitivity equation and adjoint system

in Section 4.3. For further details we refer to [17].

D.1.2 Recover formalism for dynamic centered deep Boltzmann

machines

To recover the DBM formalism of the current work, we first make the connection

between k-particle interaction functions in continuous space and interaction parameters

between discrete sites organized into layers. In this case, only self and pairwise interactions

between neighboring layers exist, i.e. K = 2. Assign to every unit s(l)
i,α a spatial location

x
(l)
i (including latent variables). First, consider the non-centered case µ(l)

α → 0, then the

connection is:

ν1(α,x, t)→−
L−1∑
l=0

N (l)∑
i=1

δ
x,x

(l)
i

a(l)
α (t),

ν2(α,β,x,y, t)→−
L−2∑
l=0

∑
〈ij〉

δ
x,x

(l)
i

δ
x,x

(l+1)
j

W
(l,l+1)
αβ (t),

(D.7)

where δx,y = 1 if x= y and 0 otherwise is the Kronecker delta, and the negative sign accounts

for the sign convention in the energy function (D.1). Similarly, the adjoint variables are

ζ1(α,x, t)→
L−1∑
l=0

N (l)∑
i=1

δ
x,x

(l)
i

φ(l)
α (t),

ζ2(α,β,x,y, t)→
L−2∑
l=0

∑
〈ij〉

δ
x,x

(l)
i

δ
x,x

(l+1)
j

Λ(l,l+1)
αβ (t),

(D.8)
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Finally the constraint equations, originally formulated in terms of a functional Fk of a set

of ordinary functions {Fk}, now become just an ordinary function:

F1[{ν},{F1}](α,x, t)→−F (l)
aα (θ(t);u(l)

aα),

F2[{ν},{F2}](α,x, t)→−F (l,l+1)
Wαβ

(θ(t);u(l,l+1)
Wαβ

).
(D.9)

where the negative sign results from the convention for the energy function (D.1) as before.

To transform to the centered frame instead, the connection is:

ν1(α,x, t)→−
L−1∑
l=0

N (l)∑
i=1

δ
x,x

(l)
i

ã(l)
α (t)−

∑
∆l=±1

q(l,l+∆l) ∑
β∈R(l+∆l)

W̃
(l,l+∆l)
αβ µ

(l+∆l)
β

 ,
ν2(α,β,x,y, t)→−

L−2∑
l=0

∑
〈ij〉

δ
x,x

(l)
i

δ
x,x

(l+1)
j

W̃
(l,l+1)
αβ (t),

(D.10)

and the constraint equations describing the time evolution of the centered parameters now

are:

F1[{ν},{F1}](α,x, t)

→−F (l)
aα −

∑
∆l=±1

q(l,l+∆l) ∑
β∈R(l+∆l)

F (l,l+∆l)
Wαβ

µ
(l+∆l)
β + W̃

(l,l+∆l)
αβ

dµ
(l+∆l)
β

dt

 (D.11)

and

F2[{ν},{F2}](α,x, t)→−F (l,l+1)
Wαβ

, (D.12)

and the adjoint variables are unchanged.

201



The functional J in (D.5) becomes:

J [{ν},{ζ}](t)→−
L−2∑
l=0

∑
α∈R(l)

∑
β∈R(l+1)

Λ(l,l+1)
αβ F

(l,l+1)
Wαβ

−
L−1∑
l=0

∑
α∈R(l)

φ(l)
α ×

F (l)
aα

+
∑

∆l=±1
q(l,l+∆l) ∑

β∈R(l+∆l)

F (l,l+∆l)
Wαβ

µ
(l+∆l)
β + W̃

(l,l+∆l)
αβ

dµ
(l+∆l)
β

dt


.

(D.13)

In the adjoint system (D.6), the variational derivatives become (see also Appendix D.4 for

this result):

δJ [{ν},{ζ}](t)
δν1(α,x, t) →− δJ [{ν},{ζ}](t)

δã
(l)
α

= ψ
a

(l)
α

(D.14)

and

δJ [{ν},{ζ}](t)
δν2(α,β,y, t) →−

δJ [{ν},{ζ}](t)
δW̃

(l,l+1)
αβ

=−ψ
W

(l,l+1)
αβ

+ q(l,l+1)

µ(l)
α ψa(l+1)

β

+µ
(l+1)
β ψ

a
(l)
α
−φ(l+1)

β

dµ
(l)
α

dt
−φ(l)

α

dµ
(l+1)
β

dt

,
(D.15)

where ψθ from Section 4.3 is

ψθ =
L−2∑
m=0

∑
ζ∈R(m)

∑
η∈R(m+1)

Λ(m,m+1)
ζη

∂F
(m,m+1)
Wζη

∂θ
+
L−1∑
m=0

∑
ζ∈R(m)

φ
(m)
ζ ×

∂F (m)
aζ

∂θ
+

∑
∆m=±1

q(m,m+∆m) ∑
η∈R(m+∆m)

∂F
(m,m+∆m)
Wζη

∂θ
µ(m+∆m)
η

.
(D.16)
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which substituted into (D.6) recovers the adjoint system in Section 4.3

d

dt
φ(l)
α =

N (l)∑
i=1

∆E
[
s

(l)
i,α

]
−ψ

a
(l)
α
,

d

dt
Λ(l,l+1)
αβ =

∑
〈ij〉

∆E
[
s

(l)
i,αs

(l+1)
j,β

]
−ψ

W
(l,l+1)
αβ

+ q(l,l+1)

µ(l)
α ψa(l+1)

β

+µ
(l+1)
β ψ

a
(l)
α
−φ(l+1)

β

dµ
(l)
α

dt
−φ(l)

α

dµ
(l+1)
β

dt

 .
(D.17)

The condition for extremizing the action D.4 now gives the sensitivity equation -

the variational derivatives become:

δJ [{ν},{ζ}](t)
δF

(s)
1 ({ν(α,x, t)})

→−δJ [{ν},{ζ}](t)
δF

(l)
aα

= φ(l)
α ,

δJ [{ν},{ζ}](t)
δF

(s)
2 ({ν(α,x, t)})

→−δJ [{ν},{ζ}](t)
δF

(l,l+1)
Wαβ

= Λ(l,l+1)
αβ + q(l,l+1)φ(l)

α µ
(l+1)
β + q(l,l+1)φ

(l+1)
β µ(l)

α ,

(D.18)

which substituted into (D.4) recovers the update equations of Section 4.3:

dS

du
(l)
aα

=−
∫ T

0
dt φ(l)

α
∂F

(l)
aα

∂u
(l)
aα

,

dS

du
(l,l+1)
Wαβ

=−
∫ T

0
dt
(

Λ(l,l+1)
αβ + q(l,l+1)φ(l)

α µ
(l+1)
β + q(l,l+1)φ

(l+1)
β µ(l)

α

) ∂F (l,l+1)
Wαβ

∂u
(l,l+1)
Wαβ

.

(D.19)
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D.2 Derivation of the centered gradient for DBMs

Recall the setting of Section 3.3. The parameter transformations between regular

DBM parameters a(l)
α ,W

(l,l+1)
αβ and centered DBM parameters ã(l)

α , W̃
(l,l+1)
αβ are:

W̃
(l,l+1)
αβ =W

(l,l+1)
αβ

ã(l)
α = a(l)

α +
∑

∆l=±1
q(l,l+∆l) ∑

β∈R(l+∆l)
W

(l,l+∆l)
αβ µ

(l+∆l)
β ,

(D.20)

where it is implicit that the sum should contain a delta function of the form (1−δl,0δ∆l,−1)×

(1− δl,L−1δ∆l,+1) since layer indexes are restricted to l = 0, . . . ,L−1.

After transforming the energy function to the centered parameters, taking the

gradient with respect to centered parameters gives:

∆W̃ (l,l+1)
αβ =

∑
〈ij〉

∆E
[
(s(l)
i,α−µ

(l)
α )(s(l+1)

j,β −µ(l+1)
β )

]
,

∆ã(l)
α =

N (l)∑
i=1

∆E
[
s

(l)
i,α

]
,

(D.21)

where

∆E [X] = 〈X〉(m)−〈X〉(d) (D.22)

is the difference in expectation values.

Parameters in the centered and regular DBMs are updated as:

W̃
(new,l,l+1)
αβ = W̃

(l,l+1)
αβ −η∆W̃ (l,l+1)

αβ & W
(new,l,l+1)
αβ =W

(l,l+1)
αβ −η∆W (l,l+1)

αβ ,

ã(new,l)
α = ã(l)

α −η∆ã(l)
α & a(new,l)

α = a(l)
α −η∆a(l)

α .

(D.23)

Transforming the new centered parameters back to identify the updates for the original
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gives:

W̃
(new,l,l+1)
αβ =W

(new,l,l+1)
αβ ,

⇒ W̃
(l,l+1)
αβ −η∆W̃ (l,l+1)

αβ =W
(l,l+1)
αβ −η∆W (l,l+1)

αβ ,

⇒ ∆W (l,l+1)
αβ = ∆W̃ (l,l+1)

αβ ,

(D.24)

and

ã(new,l)
α = a(new,l)

α +
∑

∆l=±1
q(l,l+∆l) ∑

β∈R(l+∆l)
W

(new,l,l+∆l)
αβ µ

(l+∆l)
β ,

⇒ ã(l)
α −η∆ã(l)

α = a(l)
α −η∆a(l)

α

+
∑

∆l=±1
q(l,l+∆l) ∑

β∈R(l+∆l)
(W (l,l+∆l)

αβ −η∆W (l,l+∆l)
αβ )µ(l+∆l)

β ,

⇒ ∆a(l)
α = ∆ã(l)

α −
∑

∆l=±1
q(l,l+∆l) ∑

β∈R(l+∆l)
∆W (l,l+∆l)

αβ µ
(l+∆l)
β ,

(D.25)

gives the update rules of Section 3.3:

∆W (l,l+1)
αβ =

∑
〈ij〉

∆E
[
(s(l)
i,α−µ

(l)
α )(s(l+1)

j,β −µ(l+1)
β )

]
,

∆a(l)
α =

N (l)∑
i=1

∆E
[
s

(l)
i,α

]
−

∑
∆l=±1

q(l,l+∆l) ∑
β∈R(l+∆l)

∆W (l,l+∆l)
αβ µ

(l+∆l)
β .

(D.26)
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D.3 Derivation of the moment closure approximation

made by dynamic Boltzmann distributions

This clarifies the chain rule used to derive the key result of Section 4.2. For any

observable 〈X〉(m), we have:

d〈X〉(m)

dt
=
L−1∑
l=0

∑
α∈R(l)

∂ 〈X〉(m)

∂a
(l)
α

∂a
(l)
α

∂t
+
L−2∑
l=0

∑
α∈R(l)

∑
β∈R(l+1)

∂ 〈X〉(m)

∂W
(l,l+1)
αβ

∂W
(l,l+1)
αβ

∂t

=
L−1∑
l=0

∑
α∈R(l)

N (l)∑
i=1

Cov
(
X,s

(l)
i,α

)
F (l)
aα

+
L−2∑
l=0

∑
α∈R(l)

∑
β∈R(l+1)

∑
〈ij〉

Cov
(
X,s

(l)
i,αs

(l+1)
j,β

)
F

(l,l+1)
Wαβ

,

(D.27)

where Cov(X,Y ) = 〈XY 〉(m)−〈X〉(m) 〈Y 〉(m).

D.4 Derivation of the centered gradient for dynamic

Boltzmann distributions

This section derives the centered gradient [41] in the dynamic DBM formalism of

Section 4.3.

206



D.4.1 Transforming the reduced model to the centered parame-

ters

Taking a derivative in time of the parameter transformations (D.20) gives:

d

dt
W̃

(l,l+1)
αβ =F (l,l+1)

Wαβ
,

d

dt
ã(l)
α =F (l)

aα +
∑

∆l=±1
q(l,l+∆l) ∑

β∈R(l+∆l)

F (l,l+∆l)
Wαβ

µ
(l+∆l)
β +W

(l,l+∆l)
αβ

dµ
(l+∆l)
β

dt

 .
(D.28)

Note that we should not explicitly use the fact that we later substitute the centers for:

µ(l)
α = 1

N (l)
∑
i

〈
s

(l)
i,α

〉(d)
. (D.29)

For now, we just consider them as arbitrary parameters.

D.4.2 Derivation of the adjoint system

Introduce adjoint variables φ(l)
α ,Λ(l)

αβ to ãα, W̃αβ. The Hamiltonian system is:

H =−DKL+
L−2∑
m=0

∑
ζ∈R(m)

∑
η∈R(m+1)

Λ(m,m+1)
ζη F

(m,m+1)
Wζη

+
L−1∑
m=0

∑
ζ∈R(m)

φ
(m)
ζ ×

F (m)
aζ

+
∑

∆m=±1
q(m,m+∆m) ∑

η∈R(m+∆m)

F (m,m+∆m)
Wζη

µ(m+∆m)
η +W

(m,m+∆m)
ζη

dµ
(m+∆m)
η

dt


,

(D.30)
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from which the dynamical system is given by:


d
dtW̃

(l,l+1)
αβ = ∂H

∂Λ(l,l+1)
αβ

d
dt ã

(l)
α = ∂H

∂φ
(l)
α

&


d
dtΛ

(l,l+1)
αβ =− ∂H

∂W̃
(l,l+1)
αβ

d
dtφ

(l)
α =− ∂H

∂ã
(l)
α

. (D.31)

Calculating the adjoint equations gives:

d

dt
φ(l)
α =∂DKL

∂ã
(l)
α

−
L−2∑
m=0

∑
ζ∈R(m)

∑
η∈R(m+1)

Λ(m,m+1)
ζη

∂F
(m,m+1)
Wζη

∂ã
(l)
α

−
L−1∑
m=0

∑
ζ∈R(m)

φ
(m)
ζ ×

∂F (m)
aζ

∂ã
(l)
α

+
∑

∆m=±1
q(m,m+∆m) ∑

η∈R(m+∆m)

∂F
(m,m+∆m)
Wζη

∂ã
(l)
α

µ(m+∆m)
η

,
d

dt
Λ(l,l+1)
αβ = ∂DKL

∂W̃
(l,l+1)
αβ

−
L−2∑
m=0

∑
ζ∈R(m)

∑
η∈R(m+1)

Λ(m,m+1)
ζη

∂F
(m,m+1)
Wζη

∂W̃
(l,l+1)
αβ

−
L−1∑
m=0

∑
ζ∈R(m)

φ
(m)
ζ ×

 ∂F
(m)
aζ

∂W̃
(l,l+1)
αβ

+
∑

∆m=±1
q(m,m+∆m) ∑

η∈R(m+∆m)

∂F
(m,m+∆m)
Wζη

∂W̃
(l,l+1)
αβ

µ(m+∆m)
η



−φ(l+1)
β q(l,l+1)dµ

(l)
α

dt
−φ(l)

α q
(l,l+1)dµ

(l+1)
β

dt
.

(D.32)

The KL-divergence evaluate to:

∂DKL
∂ã

(l)
α

=
N (l)∑
i=1

∆E
[
s

(l)
i,α

]
,

∂DKL
∂W̃

(l,l+1)
αβ

=
∑
〈ij〉

∆E
[
(s(l)
i,α−µ

(l)
α )(s(l+1)

j,β −µ(l+1)
β )

]
.

(D.33)

208



We can simplify the remaining derivative terms as follows: for any F :

∂F

∂ã
(l)
α

=
∑
θ∈θ

∂F

∂θ

∂θ

∂ã
(l)
α

,

∂F

∂W̃
(l,l+1)
αβ

=
∑
θ∈θ

∂F

∂θ

∂θ

∂W̃
(l,l+1)
αβ

,
(D.34)

where we leave implicit that ∂F/∂θ = 0 if θ /∈ θ, i.e. if θ is not in the domain of F .

To evaluate ∂θ/∂θ̃: first rearrange (D.20) to find the reverse transformations:

W
(l,l+1)
αβ = W̃

(l,l+1)
αβ ,

a(l)
α = ã(l)

α −
∑

∆l=±1
q(l,l+∆l) ∑

β∈R(l+∆l)
W̃

(l,l+∆l)
αβ µ

(l+∆l)
β ,

(D.35)

and differentiate to find:

∂W
(m,m+1)
ζη

∂W̃
(l,l+1)
αβ

= δζ,αδη,βδm,l,

∂W
(m,m+1)
ζη

∂ã
(l)
α

= 0,

∂a
(m)
ζ

∂W̃
(l,l+1)
αβ

=−δm,l+1δζ,βq
(l,l+1)µ(l)

α − δm,lδζ,αq(l,l+1)µ
(l+1)
β ,

∂a
(m)
ζ

∂ã
(l)
α

= δζ,αδm,l,

(D.36)

which after substituting into (D.34) gives:

∂F

∂ã
(l)
α

= ∂F

∂a
(l)
α

,

∂F

∂W̃
(l,l+1)
αβ

= ∂F

∂W
(l,l+1)
αβ

− ∂F

∂a
(l+1)
β

q(l,l+1)µ(l)
α −

∂F

∂a
(l)
α

q(l,l+1)µ
(l+1)
β .

(D.37)

Returning to implement these simplifications in the adjoint system (D.32) gives the
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result of Section 4.3:

d

dt
φ(l)
α =

N (l)∑
i=1

∆E
[
s

(l)
i,α

]
−ψ

a
(l)
α
,

d

dt
Λ(l,l+1)
αβ =

∑
〈ij〉

∆E
[
(s(l)
i,α−µ

(l)
α )(s(l+1)

j,β −µ(l+1)
β )

]

−ψ
W

(l,l+1)
αβ

+ q(l,l+1)

µ(l)
α ψa(l+1)

β

+µ
(l+1)
β ψ

a
(l)
α
−φ(l+1)

β

dµ
(l)
α

dt
−φ(l)

α

dµ
(l+1)
β

dt

 ,
(D.38)

where we have defined for any parameter θ the following common derivative term:

ψθ =
L−2∑
m=0

∑
ζ∈R(m)

∑
η∈R(m+1)

Λ(m,m+1)
ζη

∂F
(m,m+1)
Wζη

∂θ
+
L−1∑
m=0

∑
ζ∈R(m)

φ
(m)
ζ ×

∂F (m)
aζ

∂θ
+

∑
∆m=±1

q(m,m+∆m) ∑
η∈R(m+∆m)

∂F
(m,m+∆m)
Wηζ

∂θ
µ(m+∆m)
η

.
(D.39)

D.4.3 Derivation of the sensitivity equation

The sensitivity (update) equations can be obtained from the Lagrangian:

L=DKL+
L−2∑
m=0

∑
ζ∈R(m)

∑
η∈R(m+1)

Λ(m,m+1)
ζη F

(m,m+1)
Wζη

+
L−1∑
m=0

∑
ζ∈R(m)

φ
(m)
ζ ×

F (m)
aζ

+
∑

∆m=±1
q(m,m+∆m) ∑

η∈R(m+∆m)

F (m,m+∆m)
Wζη

µ(m+∆m)
η +W

(m,m+∆m)
ζη

dµ
(m+∆m)
η

dt


,

(D.40)

from which the objective function is given by the usual relation S =
∫ T
0 dt L. By differenti-

ating with respect to the parameter vector u appearing in the differential equations F we
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obtain the result of Section 4.3:

dS

du
(l)
aα

=−
∫ T

0
dt φ(l)

α
∂F

(l)
aα

∂u
(l)
aα

,

dS

du
(l,l+1)
Wαβ

=−
∫ T

0
dt
(

Λ(l,l+1)
αβ + q(l,l+1)φ(l)

α µ
(l+1)
β + q(l,l+1)φ

(l+1)
β µ(l)

α

) ∂F (l,l+1)
Wαβ

∂u
(l,l+1)
Wαβ

.

(D.41)

In practice, we restrict the limits of integration to a window [τ,τ + ∆τ ], where we slide τ

every few optimization steps to cover the full range [0,T ].
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Appendix E

Physics-based machine learning for

modeling stochastic IP3-dependent

calcium dynamics

E.1 IP3 dependent calcium oscillations

E.1.1 Stochastic models

Figure 2 of the main textshows a schematic of the model of IP3 dependent calcium

oscillations in astrocytes. Clusters of IP3 receptors (IP3Rs) in the membrane of the

endoplasmic reticulum are activated by cytosolic calcium and IP3, allowing transport

through the channel into the cytoplasm. The channel model for a single IP3 receptor

subunit is shown in Figure E.1. While the receptor is known to be composed of four

subunits, the peak conductance is observed when only three are open. Hence, the original

model of Ref. [102] considers only three subunits. The reactions in the receptor subunit
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are:

S1k0 +CaCyt
α2


β2
S1k1,

S0k0 +CaCyt
α4


β4
S0k1,

S0k0 + IP3
α1


β1
S1k0,

S0k1 + IP3
α3


β3
S1k1,

Si0j +CaCyt
α5


β5
Si1j ,

(E.1)

where the open state is S110. Table E.1 gives the parameter values used for stochastic

simulations, which are the same values used in the original Ref. [102] model. The molecular-

based reaction rates are obtained from the concentration-based rates as:

αi = ai
cA×VCyt

,

βi = bi,

(E.2)

as derived in Section E.1.3.

Transport through the channel is given by the reactions:

3S110 +CaER
γf


γb

3S110 +CaCyt, (E.3)

as also derived in Section E.1.3 from the differential equation model by Ref. [102].

The recovery of calcium from the cytoplasm is attributed to ATP-driven pumps

such as SERCA pumps. In this model, since the density of these pumps is as high as

1000/µm2 [3] and the ER is a highly folded structure with a large surface area, this process
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is not modeled using stochastic particle-based methods, but rather by differential equations:

d[CaCyt]
dt

= J1−J2,

J1 = c1v2(c−1
1 [CaER]− [CaCyt]),

J2 = v3[CaCyt]2
[CaCyt]2 +k2

3
,

(E.4)

where J1 is a leak current, and J2 is the ATP-driven recovery of calcium back to the ER.

See also Section E.1.3.

Examples of the stochastic simulations are shown in Figure E.2. The initial number

of Ca2+ and IP3 are sampled from the Gaussian distributions:

[CaCyt]0 =N (µ0([CaCyt]),σ2
0([CaCyt])),

[IP3]0 =N (µ0([IP3]),σ2
0([IP3])),

(E.5)

where the parameter values are given in Table E.1.

After sampling the initial counts, an initial simulation is used to initialize the states

of the IP3 receptors. Let the numbers of particles corresponding to the concentrations (E.5)

be nCaCyt,0 and nIP3,0, from which the number of calcium particles in the ER nCaER,0 can

be calculated using c0, c1. The IP3R are initialized to the specified and fixed number nIP3R

of receptors, all in state S000, and all other receptor states Sijk with population zero. The

initial simulation is run with only the IP3R state reaction system (E.1), and where the

number of CaCyt, IP3,CaER is conserved, i.e. fixed to their initial values. The duration of

the initial simulation is 10 s. From this, the initial states of the receptors are taken for the

main simulation as the average state values over the last 4 s of the initial simulation.

The main simulations are run from t= 0 to t= Tmax, with the count of each species

written out at intervals ∆t(write). The currents from the differential equations (E.4) are

updated at short time intervals ∆t(diff. eq.), with all parameters as given in Table E.1.
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Table E.1: Parameter values used for stochastic simulations.

Parameter Value Description
c0 2 µM Total [Ca] in terms of cytosolic volume
c1 0.185 Ratio ER volume to cytosol volume
v1 6 s−1 Max Ca channel flux
v2 0.11 s−1 Ca leak flux constant
v3 0.9 (µM× s)−1 Max Ca uptake
k3 0.1 µM Activation constant for ATP-Ca pump
a1 400 (µM× s)−1 IP3R reaction rate
a2 0.2 (µM× s)−1 IP3R reaction rate
a3 400 (µM× s)−1 IP3R reaction rate
a4 0.2 (µM× s)−1 IP3R reaction rate
a5 20 (µM× s)−1 IP3R reaction rate
d1 0.13 µM IP3R reaction rate
d2 1.049 µM IP3R reaction rate
d3 943.4 ×10−3 µM IP3R reaction rate
d4 144.5 ×10−3 µM IP3R reaction rate
d5 82.34 ×10−3 µM IP3R reaction rate

µ0([CaCyt]) 0.25 µM Initial mean Ca concentration
µ0([IP3]) Varying Initial mean IP3 concentration
σ0([CaCyt]) 10−3 µM Initial standard deviation of Ca concentration
σ0([IP3]) 10−3 µM Initial standard deviation of IP3 concentration
VCyt 10−12 or 10−14 L Cytoplasm volume

∆t(write) 0.1 s Writing interval
∆t(diff. eq.) 0.001 s Integration step length for currents
Tmax 50 s Maximum simulation time
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Channel model of IP3R subunit

S110 S111

S010 S011

S100 S101

S000 S001

S1k0 S1k1

S0k0 S0k1

IP3 IP3

CaCyt
2+

CaCyt
2+
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Figure E.1: Channel models for the IP3R and transport through the channel, which is
open when one calcium ion and one IP3 are bound. A further calcium binding inhibits
the channel. Peak conductance is observed when three subunits are open; a fourth that
is physically observed is not modelled. The open state is S110, indicated in green.

E.1.2 Range of oscillations

Figure E.1 shows the original bifurcation diagram by Ref. [102], and the range of

oscillations in the stochastic model under consideration.

The stochastic curves should not be interpreted as a bifurcation diagram. Rather,

at each concentration of IP3:

• At each timepoint, average over stochastic simulations to obtain the mean µ(t) and

standard deviation σ(t).

• Calculate the upper and lower curves over time c±(t) = µ(t)±σ(t).

• Take the min. and max.:

c−,min = min
t

(c−(t))

c+,max = max
t

(c+(t))
(E.6)

over the last 40s of each of the 100s simulations.
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Figure E.2: Stochastic simulations of cytosolic calcium oscillations for (a) 100 IP3R
and (b) 1000 IP3R at various IP3 concentrations and cytoplasm volume of 10−14L.
Calcium spikes are observed at all concentrations, and are more pronounced at lower
receptor number.
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The resulting c−,min, c+,max are plotted in Figure E.1 to indicate the range of oscillations.

Error bars indicate 95% confidence levels.

E.1.3 Derivation of reaction model from differential equations

The original differential equations in Ref. [102] are:

d[Ca2+
Cyt]Cyt
dt

= J1−J2 +J3, (E.7)

where

J1 = c1v2(c−1
1 [Ca2+

ER]Cyt− [Ca2+
Cyt]Cyt),

J2 =
v3[Ca2+

Cyt]2Cyt
[Ca2+

Cyt]2Cyt +k2
3
,

J3 = c1v1x
3
110(c−1

1 [Ca2+
ER]Cyt− [Ca2+

Cyt]Cyt),

(E.8)

where x110 is the fraction of subunits in the open state S110, and c1,v1,v2,v3,k3 are constants

given in Table E.1. The current J1 is a leak current, J2 is the flux out of cytoplasm due to

an ATP-dependent Ca2+ pump, e.g. a SERCA pump, and J3 is the transport of Ca2+ into

cytoplasm through the open IP3R. The notation [XER]Cyt is used to denote the number

of particles of species X located in the ER, divided by the volume of Cyt to obtain a

concentration (as opposed to the volume of the ER). This conversion is used to simplify

the calculations by having to keep track of only a single volume.

The currents J1,J2 are kept as differential equations, while the transport J3 is

converted to an equivalent reaction system. For this transformation, concentration-based

reaction rates must be transformed into molecular-based reaction rates.
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Consider a general reaction of the form:

R∑
i=1

miXi→γ . . . . (E.9)

Associated with this reaction is the stoichiometry vector ν of length R, whose components

νi describe the change in the number of particles of Xi. Here, γ will be referred to as the

molecular-based reaction rate. The goal is to relate γ to the concentration-based reaction

rate k appearing in mass action kinetics:

d[Xj ]
dt

=−νjk
R∏
i=1

(
[Xi]

)mi + . . . , (E.10)

where the . . . denote other possible reactions.

The propensity term for the reaction (E.9) in units of molecules per time is:

ρ= γ
R∏
i=1

(
nXi

)
mi
, (E.11)

where nXi is the number of particles of species Xi and (x)n is the falling factorial. Note that

from the binomial factor representing all possible combinations of particles, a factor ∏Ri=1mi!

has been absorbed into γ. At large particle numbers, this is commonly approximated by

ρ≈ γ
R∏
i=1

nmi
Xi
. (E.12)

In the mass action equation (E.10), the reaction-based rate of change in units of

concentration per time is (without the stoichiometry vector):

k
R∏
i=1

(
[Xi]

)mi . (E.13)

Substitute the definition of the concentration [Xi] = nXi/(cA×V ) for nXi particles in
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volume V where cA is Avogadros constant, and convert to units of molecules per time by

multiplying by cA×V :

kcAV
R∏
i=1

(
nXi
cAV

)mi

. (E.14)

Equating this with the approximation for the propensity (E.12) gives the relation:

γ = k(cAV )1−
∑R
i=1mi . (E.15)

Using this relation, the transport current J3 can be transformed by writing it in the

equivalent form:

J3 =k1f [S110]3Cyt[Ca2+
ER]Cyt−k1b[S110]3Cyt[Ca2+

Cyt]Cyt,

k1f =v1[IP3R]−3
Cyt,

k1b =c1v1[IP3R]−3
Cyt.

(E.16)

where S110 is the open state of the IP3R in Figure E.1. From this the equivalent reaction

can be identified:

3S110 +Ca2+
ER

γ1f


γ1b

3S110 +Ca2+
Cyt, (E.17)

where the molecular-based rates are given by (E.15):

γ1f = v1n
−3
IP3R,

γ1b = c1v1n
−3
IP3R,

(E.18)

where nIP3R is the number of IP3R.
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E.1.4 Number of IP3 receptor subunits

The number of IP3 receptors (IP3R) depends on the density of channels and the

surface area of the ER. The ER is a highly folded structure, and as such its surface area

can vary significantly. In the text a large spread in the number of channels is explored.

Here, an order of magnitude estimation is provided to justify their scale.

Starting with the volume of the cytoplasm Vcyt, the volume of the ER is VER =

c1×Vcyt where c1 = 0.185 is the ratio estimated in Ref. [102]. The ER has the smallest

surface area if it is a sphere:

SAmin
ER = 4π

(
3

4πVER
)2/3

(E.19)

Let the actual surface area be some factor λ larger than the minimum:

SAER = λ×SAmin
ER (E.20)

IP3R clusters are spread out over the ER with spacing 1−7µm [105]. Assuming the IP3R

clusters were are located in a grid with spacing ∆xIP3R gives:

nIP3R clusters = SAER
∆x2

IP3R clusters
(E.21)

Each cluster contains up to 15 channels [105]. Assuming 10 channels per cluster and with

4 subunits per channel gives:

nIP3R subunits = 10×4×nIP3R clusters = 160πλ
∆x2

IP3R clusters

(
3

4πc1Vcyt
)2/3

(E.22)

Figure E.3 shows the number of IP3R subunits for a range of spacings and surface area

factors. For a highly folded ER with large λ and average cluster spacing ∆xIP3R clusters ∼
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3µm, the estimates of O(100) subunits for Volcyt = 10−14L and O(1000) subunits for

Volcyt = 10−12L are reasonable, which are the approximate magnitudes explored in the

text.

2 3 4 5 6 7
5
10

50
100

500
1000

ΔxIP3R clusters (μm)

#
su
bu
ni
ts

Number of IP3R subunits

VolCyt = 10
-14 L

2 3 4 5 6 7
100

500
1000

5000
104

ΔxIP3R clusters (μm)

#
su
bu
ni
ts

Number of IP3R subunits

VolCyt = 10
-12 L

λ = 1

λ = 4

λ = 7

λ = 10

λ = 13

Figure E.3: Number of IP3R subunits given by (E.22) as a function of the cluster
spacing ∆xIP3R clusters in µm, and the dimensionless surface area factor λ, where λ= 1
corresponds to a sphere.
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E.2 Training ML models

E.2.1 Data transformation
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Figure E.4: Example standardizing transformation for the system studied in Figure 3
of the main textat [IP3] = 0.5µM. Five stochastic simulation trajectories are shown in
gray. Top row: Number of particles of calcium and IP3 before transformation. Bottom
row: After transformation, oscillations occur around zero.

Let the stochastic simulation data be represented by the matrix X(t) of size M×Nv

where Nv is the dimension of the visible variables and M is the number of samples:

X(t) =



xᵀ1(t)

xᵀ2(t)

. . .

xᵀM (t)


(E.23)

PCA applied to X(t) leads to the parameters:

θ̂X(t) = {b̂X , ŴX ,σ
2
X}(t) (E.24)
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Figure E.5: Transformations for the IP3 system studied in Figure 3 of the main text.
The transformation is calculated for stochastic simulations at the upper and lower range
of oscillations considered, i.e. [IP3] = 0.1µM and [IP3] = 2µM.

From these parameters, approximations F̂ (approx.)
rxn. to F̂ under different reaction processes

can be calculated.

When using the model to integrate the parameters θ̂X(t), it traces out a trajectory

in D̂ =Nv +Nv×Nh+ 1 dimensional space. In order for this integration to be stable, the

inputs to the neural network F̂ (approx.)
rxn. must not be sensitive to small perturbations in

θ̂X(t). Note that the error in θ̂X(t) is set by the error in the output of the neural network,

and the integration drift that arises from integrating a noisy signal.

To ensure that the Jacobian ∂F̂ (approx.)
rxn. /∂θ̂X(t) is small, introduce the following

transformation. For a given trajectory xi(t), i= 1, . . . ,M , compute the mean and variance
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Figure E.6: Jacobian of reaction candidates with respect to standard parameters,
plotted on a log scale. The reactions are those of the model studied in Figure 3 of the
main text, and parameters θ̂ are those at a single point in time t= 50 and [IP3] = 0.7µM,
with µh = 0 and Σh = I. Top: Jacobian before the transformation (E.26). Bottom:
Jacobian after the transformation. The transformation reduces the Jacobian, increasing
the stability of the integration because small perturbations do not significantly alter the
inputs to the neural network.
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over time and samples:

m= 1
T

T∑
t=1

1
M

M∑
i=1
xi(t),

v = 1
T

T∑
t=1

1
M

M∑
i=1

[xi(t)−m]2,
(E.25)

and use these parameters to define a transformation:

yi(t) = xi(t)−m√
v

. (E.26)

This leads to a new matrix Y (t) of equal size M ×Nv. PCA applied to Y (t) leads to a

different set of parameters:

θ̂Y (t) = {b̂Y , ŴY ,σ
2
Y }(t) (E.27)

Figure E.4 shows how such a transformation standardizes oscillations. Figure E.5

shows the transformation for the system studied in Figure 3 of the main text. Here the

averages in (E.25) are taken over IP3 concentrations at the boundaries of the bifurcation

diagram studied, i.e. at [IP3] = 0.1µM and [IP3] = 2µM.

It is difficult to relate θY (t) to θX(t) since it relates the eigendecomposition of a

matrix product. Importantly, however, Figure E.6 shows that the Jacobian ∂F̂ (approx.)
rxn. /∂θ̂(t)

has decreased for the example problem studied in Figure 3 of the main text.

E.2.2 Training inputs and targets

After transforming the data X → Y , the ML parameters are identified from Y (t)

for t = 1, . . . ,T using Equation (9) of the main text. For the models considered in this

work in Figure 3 of the main textand Figure 4 of the main text, the data used are in the

range 10s to 50s of the stochastic simulations, which are of length 50s. The first 10s are

discarded to lessen the dependence of the oscillations on the chosen initial condition in
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Table E.1. The parameters obtained are the standard parameters θ̂(t). Note that the sign

of the eigenvectors is adjusted to be consistent by ensuring that for any eigenvector u we

have |cos−1(uᵀ1)| ≤ π/2.

The targets derivatives are calculated from θ̂(t) using total variation regularization

(TVR) [104]. For a time series z with elements z1, z2, . . . , zT , the time derivative ż is

obtained by solving the optimization problem:

ż = min
u

(
α||u̇||1 + 1

2 ||Au−z||2
)

(E.28)

where A is the anti-differentiation matrix, and α is a regularization parameter. In this case,

the A matrix is that of the Euler method. The optimization problem is solved using the

lagged diffusivity method [104] for 10 optimization steps for every parameter z in θ̂ with

regularization parameter α = 100. Additionally, after calculating the derivatives dθ̂/dt,

small derivative values with an absolute value below 10−5 are set to zero. The target

outputs dθ̂/dt are therefore obtained:

Target(t) = dθ̂(t)
dt

=


db̂/dt

dŴ/dt

dσ2/dt

 . (E.29)

The inputs are obtained by integrating dθ̂/dt with the anti-differentiation matrix A

to obtain smoothed inputs θ̂(integrated):

Input(t) = θ̂(integrated)(t) =


b̂(t)

Ŵ (t)

σ2(t)

 . (E.30)
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E.2.3 Reaction approximations

The physics of the system is described by the chemical master equation (CME). The

CME can be incorporated into the inference problem by using it to derive an approximation

to the time evolution of parameters. Figure E.7 shows a schematic of how this derivation

as follows.

For the distribution defined by the current parameters θ(t) = {b,W,σ2,µh,Σh}(t)

at an instant in time, Equation (7) of the main textgives the observables φ(t) = {µ,C}(t).

Next, consider for example the predator-prey reaction H+P → 2H with rate k for predators

H and prey P . Under this reaction, the observables evolve in time according to:

d〈nP 〉
dt

=−k〈nHnP 〉,

d〈nH〉
dt

= k〈nHnP 〉,
(E.31)

and

d
〈
n2
P

〉
dt

=−2k〈nHn2
P 〉+k〈nHnP 〉,

d
〈
n2
H

〉
dt

= 2k〈n2
HnP 〉+k〈nHnP 〉,

d〈nHnP 〉
dt

=−k〈n2
HnP 〉+k〈nHn2

P 〉−k〈nHnP 〉,

(E.32)

and for X /∈ {H,P}

d〈nXnP 〉
dt

=−k〈nXnHnP 〉,

d〈nXnH〉
dt

= k〈nXnHnP 〉,
(E.33)

which are derived from the CME. These equations form the time evolution of the observables

under this reaction dφ(H+P→2H)/dt. In the derivation of the desired approximations, the

reaction rates are set to unity k = 1. Ultimately, if a linear model is learned instead of a
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Figure E.7: (a) Schematic of how an approximation to the time evolution of parameters
is derived for a single reaction pathway. The observables φ(t) corresponding to the
distribution defined by the current parameters θ(t) at an instant in time are obtained
from Equation (7) of the main text. The time evolution of each observable is calculated
from the master equation, and closed using a Gaussian moment closure approxima-
tion (Equation (3) of the main text). By tracking exactly only a subset of moments
d{µv,Σvh,Tr(Σv),µh,Σh}/dt matching the dimensions of θ(t) = {b,W,σ2,µh,Σh}(t),
an approximation to the time evolution of the parameters is obtained. (b) The reactions
used to construct the inputs to the sub-network models in Figure 3 of the main textgen-
eralizing in IP3: death e.g. H →∅, birth e.g. P → 2P , and a predator-prey interaction,
e.g. H+P → 2H. These reactions mimic the reaction scheme of Lotka-Volterra system.
Each combination of {H,P} from {Ca2+, IP3,X} is included. (c) The reactions used
in the models including IP3R. The reactions are those of (b), including three extra
reactions for IP3R that explicitly conserve IP3R.
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neural network, the learned coefficients can be interpreted as the learned reaction rates.

These equations are not closed - higher order observables appear on the right

hand side. In principle, any moment closure approximation can be used to derive an

approximation, but the natural choice is to use Gaussian moment closure (Equation (3)

of the main text) since the model is Gaussian. The space of candidates can also be

increased by deriving approximations for more than one closure approximation. Under this

approximation, for any species X,Y,Z:

〈nXnY nZ〉 →−2〈nX〉〈nY 〉〈nZ〉+ 〈nX〉〈nY nZ〉+ 〈nY 〉〈nXnZ〉+ 〈nZ〉〈nXnY 〉. (E.34)

This approximation gives the closed form for the observables dφ(H+P→2H,closed)/dt.

To convert back to the parameter frame, we note that the transformation dφ/dt→

dθ/dt may not exist. Instead, we track only a certain number of observables equivalent to

the number of parameters D in the model. While the choice of the observables is arbitrary,

the obvious choice is those that match the dimensions of the parameters:

d

dt

{
µv,Cvh,Tr(Cv),µh,Σh

}
, (E.35)

which match the dimensions of θ(t) = {b,W,σ2,µh,Σh}(t). The transformations are

obtained by differentiating Equation (10) of the main text:

dW ᵀ

dt
=−Σ−1

h

dΣh

dt
Σ−1
h Cvh+ Σ−1

h

dCvh
dt

,

db

dt
=dµv
dt
− dC

ᵀ
vh

dt
Σ−1
h µh+CᵀvhΣ−1

h

dΣh

dt
Σ−1
h µh−C

ᵀ
vhΣ−1

h

dµh
dt

,

dσ2

dt
=dTr(Cv)

dt
−Tr

(dCvh
dt

)ᵀ
Σ−1
h Σvh+CᵀvhΣ−1

h

dCvh
dt
−CᵀvhΣ−1

h

dΣh

dt
Σ−1
h Cvh

.
(E.36)

The resulting time evolution vector F (approx.)
H+P→2H(θ(t)) is an approximation to the true time
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evolution. It has been shown that the linearity of the CME in reaction operators extends

this form of the approximation [16]. If a linear combination of such approximations is

used instead of a neural network, the learned coefficients are directly the reaction rates

associated with each process.

Finally, the differential equations can be transformed to the standard parameter

space using the inverse of Equation (10) of the main textand its derivative:

b̂= b+Wµh,

Ŵ =WΣ1/2
h ,

(E.37)

and

F̂b̂ = Fb+FWµh+WFµh ,

F̂Ŵ = FWΣ1/2
h + 1

2WΣ−1/2
h FΣh ,

(E.38)

where (E.38) only holds for diagonal latent covariance matrices Σh as parameterized in

Equation (13) of the main textdue to the derivative of the matrix square root. In general,

the derivative of the matrix square root may be expressed through a Kronecker sum as

dΣ1/2
h /dt= (Σ1/2

h ⊕Σ1/2
h )−1.

The result of the transformation is F̂ (approx.)
H+P→2H , the approximation to the time

evolution in the standard space.

E.2.4 Standardizing inputs / outputs of subnet

The inputs to the subnet of Figure 1 of the main textare standardized as is typical

for neural networks, as well as the target outputs. From the training data X(t) of size

M samples by Nv visible variables, the matrix is transformed X(t)→ Y (t) as discussed

previously, and then the standard ML parameters θ̂ML(t) are obtained.
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The standardization for the outputs is straightforward. By differentiating θ̂(t) with

total variation regularization, the target outputs of the subnet dθ̂ML/dt are obtained. The

mean and standard deviation are calculated:

µ(targets) = 1
T

T∑
t=1

dθ̂ML(t)
dt

,

σ(targets) =

 1
T

T∑
t=1

dθ̂ML(t)
dt

−µ(targets)

2
1/2

,

(E.39)

and the targets are standardized:

dθ̂ML(t)
dt

→

dθ̂ML(t)
dt

−µ(targets)

/σ(targets) (E.40)

Standardizing the inputs is not straightforward because they depend on the latent

parameters µh,Σh, which are defined by their Fourier coefficients (Equation (13) of the

main text), which are learned. The standardizing parameters may be learned with a

normalizing layer, but this is challenging in practice. Instead, we bootstrap the inputs to

estimate these parameters as follows. Keep only the highest frequency fmax. in the Fourier

expansion (Equation (13) of the main text), and set all corresponding coefficients a= b= 1.

Then the ML parameters are bootstrapped with this choice for µh,Σh to estimate the

inputs F̂ (approx.)
A+B→2B for the different reactions, and the standardization proceeds for each

reaction in the usual way:

µ
(inputs)
A+B→2B = 1

T

T∑
t=1
F̂

(approx.)
A+B→2B(θ̂(t)),

σ
(inputs)
A+B→2B =

 1
T

T∑
t=1

(
F̂

(approx.)
A+B→2B(θ̂(t))−µ(inputs)

A+B→2B

)21/2

,

F̂
(approx.)
A+B→2B →

(
F̂

(approx.)
A+B→2B−µ

(inputs)
A+B→2B

)
/σ

(inputs)
A+B→2B.

(E.41)
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E.3 Learned model of Calcium oscillations

E.3.1 Frequencies

The latent mean and variance are learned in parallel to the parameters in the

differential equation model. By not fixing these parameters, the model is more easily

able to find a non-intersecting trajectory in θ-space. The latent parameters µh,Σh are

represented by the Fourier decomposition given in Equation (13) of the main text.

Figure E.8 shows the frequencies chosen for calcium oscillation models (Figure 3 of

the main textand Figure 4 of the main text). The frequencies fn = {1,2,3,4,5,6}×2π/40

s−1 allow oscillations on the same period as the calcium oscillations over several seconds.

E.3.2 Learned latent representation

Figure E.9 shows the learned latent mean µh in this representation for the four

models of Figure 3 of the main text: a deep & wide subnet compared to a shallow &

thin subnet, with each a reaction-based model compared to parameter-only model without

reactions. The learned frequencies for the reaction-based model are more coherent than

for the parameter-only model as seen in Figure E.9, and similarly for Σh. This coherence

suggests that the network uncovers an emergent order parameter.

E.3.3 Learned moment closure approximation

DBDs learn a moment closure approximation from data. The reduced model evolves

in time as:

dp̃

dt
=
∑
θ∈θ

∂p̃

∂θ
×Fθ, (E.42)
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where Fθ(θ) = dθ/dt by definition. An observable 〈X(n)〉 where X(n) is some scalar

function evolves according to:

d〈X(n)〉
dt

=
∑
θ∈θ

(∑
n
X(n)∂p̃

∂θ

)
×Fθ (E.43)

For maximum-entropy distributions, this quantity is a covariance between X(n) and the

moments controlled by interactions in the energy function [18]. For example, for a restricted

Boltzmann machine, correlations between visible units have been replaced by correlations

with latent variables, whose activation is learned. For the Gaussian distribution of PCA, it

is easiest to work out the equations numerically.

Figure E.10 plots the terms for the mean number of calcium X(n) = nCa in the

models corresponding to Figure 3 of the manuscript. The terms show that the Fµh term is

learned to be a counter-phase variable to the FbCa term. The oscillations for the reaction-

based model are more coherent, have higher amplitude and frequency on the order of the

calcium oscillations. On the other hand, the parameter-based model oscillates at a higher

frequency and lower amplitude. This shows that in the comparison model, the inaccuracies

in the learned parameters result partially from finding a flawed latent representation in µh

and Σh.

E.3.4 Comparison model without reaction approximations

Figure E.11 shows the architecture of the comparison model to Figure 1 of the main

text. The network architecture is equivalent except that the reaction approximations are

missing. Therefore, the network must learn the functional forms from scratch from the

parameters θ(t).
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Figure E.8: Frequencies in Equation (13) of the main textused to train the DBD
models. The frequencies are chosen to represent oscillations on the same order of
magnitude as the calcium oscillations over several seconds.

E.3.5 Mean-squared error (MSE)

The mean-squared error (MSE) over parameters in learned models is shown in

Figure 4 of the main text. Let θ̂int(t; [IP3]) be the integrated parameters after learning the

reduced model for a single IP3 concentration, and θ̂ML(t; [IP3]) the maximum likelihood

parameters identified from the data. The MSE at a single IP3 concentration is then given

by:

MSE([IP3]) = 1
T

T∑
t=1
|θ̂int(t; [IP3])− θ̂ML(t; [IP3])|2. (E.44)
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Figure E.9: (a) Learned µh time evolution according to the Fourier representa-
tion (Equation (13) of the main text) for 20 identical trained models and their mean.
Left column: deep & wide subnet as shown in Figure 3 of the main text; bottom row:
shallow & thin subnet. Right column: reactions based model as shown in Figure 1 of the
main text; right column: comparison model without reaction approximations as shown
in Figure E.11. (b) The learned Fourier coefficients for µh. (c) The standard deviation
of the coefficients. The coefficients in the reaction based model are more coherent.
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Figure E.10: Moment closure terms learned corresponding to the model of Figure 3
of the manuscript. First column: the shallow subnet model for the reaction-based
framework. Second column: shallow subnet, parameter model. Third column: deep
subnet, reaction model. Fourth column: deep subnet, parameter model. First row: At a
single concentration of IP3 = 0.7µM, the mean number of calcium 〈nCa〉 is shown for
DBD models, with ground truth from the stochastic simulations in red. Second row:
The derivative in time of the mean calcium concentration: d〈nCa〉/dt. Third row: The
terms in Equation (3) for the mean calcium X(n) = nCa. Fourth row: Same as third
row with error bars from 10 optimization trials.
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